Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Ergodic equivalence relations, cohomology, and von Neumann algebras. I


Authors: Jacob Feldman and Calvin C. Moore
Journal: Trans. Amer. Math. Soc. 234 (1977), 289-324
MSC: Primary 22D40; Secondary 28A65, 46L10
DOI: https://doi.org/10.1090/S0002-9947-1977-0578656-4
MathSciNet review: 0578656
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (X,\mathcal{B})$ be a standard Borel space, $ R \subset X \times X$ an equivalence relation $ \in \mathcal{B} \times \mathcal{B}$. Assume each equivalence class is countable. Theorem 1: $ \exists $ a countable group G of Borel isomorphisms of $ (X,\mathcal{B})$ so that $ R = \{ (x,gx):g \in G\} $. G is far from unique. However, notions like invariance and quasi-invariance and R-N derivatives of measures depend only on R, not the choice of G. We develop some of the ideas of Dye [1], [2] and Krieger [1]-[5] in a fashion explicitly avoiding any choice of G; we also show the connection with virtual groups. A notion of ``module over R'' is defined, and we axiomatize and develop a cohomology theory for R with coefficients in such a module. Surprising application (contained in Theorem 7): let $ \alpha ,\beta $ be rationally independent irrationals on the circle $ \mathbb{T}$, and f Borel: $ \mathbb{T} \to \mathbb{T}$. Then $ \exists $ Borel $ g,h:\mathbb{T} \to \mathbb{T}$ with $ f(x) = (g(ax)/g(x))(h(\beta x)/h(x))$ a.e. The notion of ``skew product action'' is generalized to our context, and provides a setting for a generalization of the Krieger invariant for the R-N derivative of an ergodic transformation: we define, for a cocycle c on R with values in the group A, a subgroup of A depending only on the cohomology class of c, and in Theorem 8 identify this with another subgroup, the ``normalized proper range'' of c, defined in terms of the skew action. See also Schmidt [1].


References [Enhancements On Off] (What's this?)

  • [W] Ambrose [1], Representation of ergodic flows, Ann. of Math. (2) 42 (1941), 723-739. MR 3, 52. MR 0004730 (3:52c)
  • [H] Anzai [1], Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83-99. MR 12, 719. MR 0040594 (12:719d)
  • [L] Auslander and C. C. Moore [1], Unitary representations of solvable lie groups, Mem. Amer. Math. Soc. No. 62 (1966), 199 pp. MR 34 #7723. MR 0207910 (34:7723)
  • [A] Connes [1], Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133-252. MR 49 #5865. MR 0341115 (49:5865)
  • [A] Connes and M. Takesaki [1], Flots des poids sur les facteurs de type III, C. R. Acad. Sci. Paris Sér. A 278 (1974), 945-948. MR 50 #8099. MR 0355625 (50:8099)
  • 1. -[2], The flow of weights on a factor of type III (preprint).
  • 2. Dang Ngoc Nghiem [1], On the classification of dynamical systems, Ann. Inst. H. Poincaré Sect. 13 (N. S.) 9 (1973), 397-425. MR 49 #535. MR 0335755 (49:535)
  • [H] A. Dye [1], On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), 119-159. MR 24 #A1366. MR 0131516 (24:A1366)
  • 3. -[2], On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963), 551-576. MR 28 #1275. MR 0158048 (28:1275)
  • [S] Eilenberg and S. Mac Lane [1], Cohomology theory in abstract groups. I, Ann. of Math. (2) 48 (1947), 51-78. MR 8, 367.
  • [J] Feldman and D. A. Lind [1], Hyperfiniteness and the Halmos-Rohlin theorem for nonsingular abelian actions, Proc. Amer. Math. Soc. 55 (1976), 339-344. MR 0409764 (53:13516)
  • [J] Feldman and C. C. Moore [1], Ergodic equivalence relations, cohomology, and von Neumann algebras, Bull. Amer. Math. Soc. 81 (1975), 921-924. MR 0425075 (54:13033)
  • [J] M. G. Fell [1], A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472-476. MR 25 #2573. MR 0139135 (25:2573)
  • [T] Hamachi, Y. Oka and M. Osikawa [1], Flows associated with ergodic nonsingular transformation groups, RIMS (Kyoto) 11 (1975). MR 0390172 (52:10998)
  • [S] Kakutani [1], Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19 (1943), 635-641. MR 7, 255. MR 0014222 (7:255f)
  • [W] A. Krieger [1], On non-singular transformations of a measure space. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. 11 (1969), 83-97. MR 39 # 1628.
  • 4. -[2], On non-singular transformations of a measure space. II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. 11 (1969), 98-119. MR 39 # 1628. MR 0240279 (39:1628)
  • 5. -[3], On constructing non-$ ^\ast$isomorphic hyperfinite factors of type III, J. Functional Analysis 6 (1970), 97-109. MR 41 #4260. MR 0259624 (41:4260)
  • 6. -[4], On a class of hyperfinite factors that arise from null-recurrent Markov chains, J. Functional Analysis 7 (1971), 27-42. MR 43 #938. MR 0275181 (43:938)
  • 7. -[5], On the Araki-Woods asymptotic ratio set and nonsingular transformations, Lecture Notes in Math., no. 160, Springer-Verlag, Berlin and New York, 1970, pp. 158-177. MR 0414823 (54:2915)
  • 8. -[6], On ergodic flows and the isomorphism of factors, Math. Ann. 223 (1976), 19-70. MR 0415341 (54:3430)
  • [C] Kuratowski [1], Topologie, Warsaw-Livoue, 1933.
  • [G] W. Mackey [1], Point realizations of transformation groups, Illinois J. Math. 6 (1962), 327-335. MR 26 #1424. MR 0143874 (26:1424)
  • 9. -[2], Ergodic theory and virtual groups, Math. Ann. 166 (1966), 187-207. MR 34 #1444. MR 0201562 (34:1444)
  • [C] C. Moore [1], Extensions and low dimensional cohomology theory of locally compact groups. I, Trans. Amer. Math. Soc. 113 (1964), 40-63. MR 30 #2106. MR 0171880 (30:2106)
  • 10. -[2], Extensions and low dimensional cohomology theory of locally compact groups. II, Trans. Amer. Math. Soc. 113 (1964), 64-86. MR 30 #2106.
  • 11. -[3], Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), 1-34. MR 0414775 (54:2867)
  • 12. -[4], Group extensions and cohomology for locally compact groups. IV, Trans. Amer. Math. Soc. 221 (1976), 35-58. MR 0414776 (54:2868)
  • [J] M. Rosenblatt [1], Equivalent invariant measures, Israel J. Math. 17 (1974), 261-270. MR 50 #2813. MR 0350320 (50:2813)
  • [S] Sakai [1], $ {C^\ast}$ algebras and $ {W^\ast}$ algebras, Springer-Verlag, New York, 1971. MR 0442701 (56:1082)
  • [K] Schmidt [1], Cohomology and skew products of ergodic transformations, Warwick, 1974 (preprint).
  • [J] Westman [1], Cohomology for the ergodic actions of countable groups, Proc. Amer. Math. Soc. 30 (1971), 318-320. MR 43 #6402. MR 0280683 (43:6402)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22D40, 28A65, 46L10

Retrieve articles in all journals with MSC: 22D40, 28A65, 46L10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0578656-4
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society