Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Homotopy and uniform homotopy


Authors: Allan Calder and Jerrold Siegel
Journal: Trans. Amer. Math. Soc. 235 (1978), 245-270
MSC: Primary 55D99; Secondary 54E99
DOI: https://doi.org/10.1090/S0002-9947-1978-0458416-6
MathSciNet review: 0458416
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the sets, homotopy and uniform homotopy classes of maps from a finite dimensional normal space to a space of finite type with finite fundamental group, coincide. Applications of this result to the study of remainders of Stone-Cech compactifications, Kan extensions, and other areas are given.


References [Enhancements On Off] (What's this?)

  • [1] Allan Calder, The cohomotopy groups of Stone-Čech increments, Nederl. Akad. Wetensch. Proc. Ser. A 75 = Indag. Math. 34 (1972), 37-44. MR 46 #2673. MR 0303536 (46:2673)
  • [2] -, On the cohomology of $ \beta {{\mathbf{R}}^n}$, Quart J. Math. Oxford Ser (2) 25 (1974), 385-394. MR 51 #1801. MR 0365549 (51:1801)
  • [3] -, Uniform homotopy, Fund. Math. (to appear). MR 525932 (80i:55003)
  • [4] A. Calder and J. Siegel, Homotopy and Kan extensions, Categorical Topology, Lecture Notes in Math., vol. 540, Springer-Verlag, Berlin and New York, 1976. MR 0440532 (55:13407)
  • [5] A. Dold, Lectures on algebraic topology, Springer-Verlag, Berlin and New York, 1972. MR 0415602 (54:3685)
  • [6] -, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223-255. MR 27 #5264. MR 0155330 (27:5264)
  • [7] C. H. Dowker, Mapping theorems for noncompact spaces, Amer. J. Math. 69 (1947), 200-242. MR 8, 594. MR 0020771 (8:594g)
  • [8] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N. J., 1952. MR 14, 398. MR 0050886 (14:398b)
  • [9] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [10] I. Glicksberg, Stone-Čech compactification of products, Trans. Amer. Math. Soc. 90 (1959), 369-382. MR 21 #4405. MR 0105667 (21:4405)
  • [11] M. Jerson, J. Siegel and S. Weingram, Distinctive properties of Stone-Čech compactifications, Topology 8 (1967), 195-201. MR 39 #4607. MR 0243285 (39:4607)
  • [12] A. T. Lundell and S. Weingram, The topology of CW complexes, Van Nostrand, Princeton, N. J., 1969.
  • [13] S. Mac Lane, Categories for the working mathematician, Springer-Verlag, Berlin and New York, 1971. MR 50 #7275. MR 0354798 (50:7275)
  • [14] J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90 (1959), 272-280. MR 20 #6700. MR 0100267 (20:6700)
  • [15] K. Morita, Čech cohomology and covering dimension for topological spaces, Fund. Math. 87 (1975), 31-52. MR 0362264 (50:14706)
  • [16] -, On generalizations of Borsuk's homotopy extension theorem, Fund. Math. 87 (1975), 1-6.
  • [17] A. R. Pears, Dimension theory of general spaces, Cambridge Univ. Press, London and New York, 1975. MR 0394604 (52:15405)
  • [18] J. Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239-246. MR 27 #4235. MR 0154286 (27:4235)
  • [19] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)
  • [20] P. Tully, On regularity in Hurewitz fiber spaces, Trans. Amer. Math. Soc. 116 (1965), 126-134. MR 32 #6463. MR 0189036 (32:6463)
  • [21] C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965), 56-69. MR 30 #1515. MR 0171284 (30:1515)
  • [22] R. C. Walker, The Stone-Čech compactification, Springer-Verlag, Berlin and New York, 1974. MR 52 #1595. MR 0380698 (52:1595)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55D99, 54E99

Retrieve articles in all journals with MSC: 55D99, 54E99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0458416-6
Keywords: Homotopy, uniform homotopy, Stone-Cech remainder, Kan extension, Čech extension, obstruction theory, bounded path length
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society