Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Lattice-valued Borel measures. II


Author: Surjit Singh Khurana
Journal: Trans. Amer. Math. Soc. 235 (1978), 205-211
MSC: Primary 28A55
DOI: https://doi.org/10.1090/S0002-9947-1978-0460590-2
MathSciNet review: 0460590
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let T be a completely regular Hausdorff space, $ {C_b}(T)$ the set of all bounded real-valued continuous functions on T, E a boundedly monotone complete ordered vector space, and $ \varphi :{C_b}(T) \to E$ a positive linear map. It is proved that under certain conditions there exist $ \sigma $-additive, $ \tau $-smooth or tight E-valued measures on T which represent $ \varphi $.


References [Enhancements On Off] (What's this?)

  • [1] S. Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc. 86 (1957), 70-90. MR 19, 868. MR 0090774 (19:868c)
  • [2] S. S. Khurana, Lattice-valued Borel measures, Rocky Mountain J. Math. 6 (1976), 377-382. MR 0399409 (53:3253)
  • [3] V. S. Varadarajan, Measures on topological spaces, Mat. Sb. (N.S.) 55 (97) (1961), 35-100; English transl., Amer. Math. Soc. Transl. (2) 48 (1965), 161-228. MR 26 #6342. MR 0148838 (26:6342)
  • [4] J. D. M. Wright, Stone-algebra-valued measures and integrals, Proc. London Math. Soc. (3) 19 (1969), 107-122. MR 39 # 1625. MR 0240276 (39:1625)
  • [5] -, Measures with values in a partially ordered vector space, Proc. London Math. Soc. (3) 25 (1972), 675-688. MR 49 #9152. MR 0344413 (49:9152)
  • [6] -, The measure extension problem for vector lattices, Ann. Inst. Fourier (Grenoble) 21 (1971), 65-85. MR 48 #8748. MR 0330411 (48:8748)
  • [7] -, An algebraic characterization of vector lattices with the Borel regularity property, J. London Math. Soc. (2) 7 (1973), 277-285. MR 48 # 11441. MR 0333116 (48:11441)
  • [8] -, An extension theorem, J. London Math. Soc. (2) 7 (1974), 531-539. MR 49 #9153. MR 0344414 (49:9153)
  • [9] -, Embeddings in vector lattices, J. London Math. Soc. (2) 8 (1974), 699-706. MR 50 #5439. MR 0352953 (50:5439)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A55

Retrieve articles in all journals with MSC: 28A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0460590-2
Keywords: $ \tau $-smooth measures, tight measures, weakly $ \sigma $-distributive lattices, monotone order $ \sigma $-continuous, order $ \sigma $-continuous, monotone order $ \sigma $-closed, order $ \sigma $-closed
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society