Coordinatization applied to finite Baer * rings

Author:
David Handelman

Journal:
Trans. Amer. Math. Soc. **235** (1978), 1-34

MSC:
Primary 16A28

MathSciNet review:
0463230

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We clarify and algebraicize the construction of the 'regular rings' of finite Baer rings. We first determine necessary and sufficient conditions of a finite Baer ring so that its maximal ring of right quotients is the 'regular ring', coordinating the projection lattice. This is applied to yield significant improvements on previously known results: If *R* is a finite Baer ring with right projections -equivalent to left projections , and is either of type II or has 4 or more equivalent orthogonal projections adding to 1, then all matrix rings over *R* are finite Baer rings, and they also satisfy ; if *R* is a *real* algebra without central abelian projections, then all matrix rings over *R* are also .

An alternate approach to the construction of the 'regular ring' is via the Coordinatization Theorem of von Neumann. This is discussed, and it is shown that if a Baer ring without central abelian projections *has* a 'regular ring', the 'regular ring' must be the maximal ring of quotients. The following result comes out of this approach: A finite Baer ring satisfying the 'square root' (SR) axiom, and either of type II or possessing 4 or more equivalent projections as above, satisfies , and so the results above apply.

We employ some recent results of J. Lambek on epimorphisms of rings. Some incidental theorems about the existence of faithful epimorphic regular extensions of semihereditary rings also come out.

**[1]**S. K. Berberian,*𝑁×𝑁 matrices over an 𝐴𝑊*-algebra*, Amer. J. Math.**80**(1958), 37–44. MR**0098329****[2]**-,*Baer*-*rings*, Grundlehren math. Wiss., Band 195, Springer-Verlag, New York, 1972.**[3]**John L. Burke,*On the property (𝑃𝑈) for *-regular rank rings*, Canad. Math. Bull.**19**(1976), no. 1, 21–38. MR**0417232****[4]**Vasily C. Cateforis,*Flat regular quotient rings*, Trans. Amer. Math. Soc.**138**(1969), 241–249. MR**0238899**, 10.1090/S0002-9947-1969-0238899-1**[5]**K. R. Goodearl, D. Handelman and J. Lawrence,*Strongly prime and completely torsion free rings*, Carleton Math. Lecture Notes, no. 109, Carleton Univ., Ottawa, Canada, 1974.**[6]**Izidor Hafner,*The regular ring and the maximal ring of quotients of a finite Baer *-ring*, Michigan Math. J.**21**(1974), 153–160. MR**0342552****[7]**D. Handelman,*Strongly prime, simple self-infective, and completely torsion-free rings*, Ph. D. Dissertation, McGill Univ.,1975.**[8]**David Handelman,*Perspectivity and cancellation in regular rings*, J. Algebra**48**(1977), no. 1, 1–16. MR**0447329****[9]**David Handelman,*Completions of rank rings*, Canad. Math. Bull.**20**(1977), no. 2, 199–205. MR**0472898****[10]**J. M. Howie and J. R. Isbell,*Epimorphisms and dominions. II*, J. Algebra**6**(1967), 7–21. MR**0209203****[11]**Bjarni Jónsson,*Representations of complemented modular lattices*, Trans. Amer. Math. Soc.**97**(1960), 64–94. MR**0120175**, 10.1090/S0002-9947-1960-0120175-0**[12]**Irving Kaplansky,*Any orthocomplemented complete modular lattice is a continuous geometry*, Ann. of Math. (2)**61**(1955), 524–541. MR**0088476****[13]**Irving Kaplansky,*Rings of operators*, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR**0244778****[14]**Joachim Lambek,*Lectures on rings and modules*, With an appendix by Ian G. Connell, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. MR**0206032****[15]**Joachim Lambek,*Localization at epimorphisms and quasi-injectives*, J. Algebra**38**(1976), no. 1, 163–181. MR**0453793****[16]**Shuichiro Maeda and Samuel S. Holland Jr.,*Equivalence of projections in Baer *-rings*, J. Algebra**39**(1976), no. 1, 150–159. MR**0404319****[17]**John von Neumann,*Continuous geometry*, Foreword by Israel Halperin. Princeton Mathematical Series, No. 25, Princeton University Press, Princeton, N.J., 1960. MR**0120174****[18]**N. Prijatelj and I. Vidav,*On special *-regular rings*, Michigan Math. J.**18**(1971), 213–221. MR**0283024****[19]**Ernest S. Pyle,*The regular ring and the maximal ring of quotients of a finite Baer *-ring*, Trans. Amer. Math. Soc.**203**(1975), 201–213. MR**0364338**, 10.1090/S0002-9947-1975-0364338-9**[20]**J.-E. Roos,*Sur l'anneau maximal de fractions des*-*algebres et des anneaux de Baer*, C. R. Acad. Sci. Paris Sér. A-B**266**(1968), A120-A123. MR**39**#6093.**[21]**Bo Stenström,*Rings and modules of quotients*, Lecture Notes in Mathematics, Vol. 237, Springer-Verlag, Berlin-New York, 1971. MR**0325663****[22]**Yuzo Utumi,*On the continuity and self-injectivity of a complete regular ring*, Canad. J. Math.**18**(1966), 404–412. MR**0223409****[23]**Yuzo Utumi,*On continuous rings and self injective rings*, Trans. Amer. Math. Soc.**118**(1965), 158–173. MR**0174592**, 10.1090/S0002-9947-1965-0174592-8**[24]**Y. Utumi,*On rings of which any one-sided quotient rings are two-sided*, Proc. Amer. Math. Soc.**14**(1963), 141–147. MR**0142568**, 10.1090/S0002-9939-1963-0142568-6**[25]**Ivan Vidav,*On some *regular rings*, Acad. Serbe Sci. Publ. Inst. Math.**13**(1959), 73–80. MR**0126735**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16A28

Retrieve articles in all journals with MSC: 16A28

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1978-0463230-1

Keywords:
Finite Baer ring,
epimorphism of ring,
maximal ring of quotients,
complete -regular ring,
complemented modular lattice,
continuous geometry

Article copyright:
© Copyright 1978
American Mathematical Society