Coordinatization applied to finite Baer * rings
Author:
David Handelman
Journal:
Trans. Amer. Math. Soc. 235 (1978), 134
MSC:
Primary 16A28
MathSciNet review:
0463230
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We clarify and algebraicize the construction of the 'regular rings' of finite Baer rings. We first determine necessary and sufficient conditions of a finite Baer ring so that its maximal ring of right quotients is the 'regular ring', coordinating the projection lattice. This is applied to yield significant improvements on previously known results: If R is a finite Baer ring with right projections equivalent to left projections , and is either of type II or has 4 or more equivalent orthogonal projections adding to 1, then all matrix rings over R are finite Baer rings, and they also satisfy ; if R is a real algebra without central abelian projections, then all matrix rings over R are also . An alternate approach to the construction of the 'regular ring' is via the Coordinatization Theorem of von Neumann. This is discussed, and it is shown that if a Baer ring without central abelian projections has a 'regular ring', the 'regular ring' must be the maximal ring of quotients. The following result comes out of this approach: A finite Baer ring satisfying the 'square root' (SR) axiom, and either of type II or possessing 4 or more equivalent projections as above, satisfies , and so the results above apply. We employ some recent results of J. Lambek on epimorphisms of rings. Some incidental theorems about the existence of faithful epimorphic regular extensions of semihereditary rings also come out.
 [1]
S.
K. Berberian, 𝑁×𝑁 matrices over an
𝐴𝑊*algebra, Amer. J. Math. 80
(1958), 37–44. MR 0098329
(20 #4790)
 [2]
, Baer rings, Grundlehren math. Wiss., Band 195, SpringerVerlag, New York, 1972.
 [3]
John
L. Burke, On the property (𝑃𝑈) for *regular rank
rings, Canad. Math. Bull. 19 (1976), no. 1,
21–38. MR
0417232 (54 #5290)
 [4]
Vasily
C. Cateforis, Flat regular quotient rings,
Trans. Amer. Math. Soc. 138 (1969), 241–249. MR 0238899
(39 #259), http://dx.doi.org/10.1090/S00029947196902388991
 [5]
K. R. Goodearl, D. Handelman and J. Lawrence, Strongly prime and completely torsion free rings, Carleton Math. Lecture Notes, no. 109, Carleton Univ., Ottawa, Canada, 1974.
 [6]
Izidor
Hafner, The regular ring and the maximal ring of quotients of a
finite Baer *ring, Michigan Math. J. 21 (1974),
153–160. MR 0342552
(49 #7298)
 [7]
D. Handelman, Strongly prime, simple selfinfective, and completely torsionfree rings, Ph. D. Dissertation, McGill Univ.,1975.
 [8]
David
Handelman, Perspectivity and cancellation in regular rings, J.
Algebra 48 (1977), no. 1, 1–16. MR 0447329
(56 #5642)
 [9]
David
Handelman, Completions of rank rings, Canad. Math. Bull.
20 (1977), no. 2, 199–205. MR 0472898
(57 #12584)
 [10]
J.
M. Howie and J.
R. Isbell, Epimorphisms and dominions. II, J. Algebra
6 (1967), 7–21. MR 0209203
(35 #105b)
 [11]
Bjarni
Jónsson, Representations of complemented
modular lattices, Trans. Amer. Math. Soc.
97 (1960), 64–94.
MR
0120175 (22 #10932), http://dx.doi.org/10.1090/S00029947196001201750
 [12]
Irving
Kaplansky, Any orthocomplemented complete modular lattice is a
continuous geometry, Ann. of Math. (2) 61 (1955),
524–541. MR 0088476
(19,524f)
 [13]
Irving
Kaplansky, Rings of operators, W. A. Benjamin, Inc., New
YorkAmsterdam, 1968. MR 0244778
(39 #6092)
 [14]
Joachim
Lambek, Lectures on rings and modules, With an appendix by Ian
G. Connell, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.Toronto,
Ont.London, 1966. MR 0206032
(34 #5857)
 [15]
Joachim
Lambek, Localization at epimorphisms and quasiinjectives, J.
Algebra 38 (1976), no. 1, 163–181. MR 0453793
(56 #12046)
 [16]
Shuichiro
Maeda and Samuel
S. Holland Jr., Equivalence of projections in Baer *rings, J.
Algebra 39 (1976), no. 1, 150–159. MR 0404319
(53 #8121)
 [17]
John
von Neumann, Continuous geometry, Foreword by Israel Halperin.
Princeton Mathematical Series, No. 25, Princeton University Press,
Princeton, N.J., 1960. MR 0120174
(22 #10931)
 [18]
N.
Prijatelj and I.
Vidav, On special *regular rings, Michigan Math. J.
18 (1971), 213–221. MR 0283024
(44 #257)
 [19]
Ernest
S. Pyle, The regular ring and the maximal ring
of quotients of a finite Baer *ring, Trans.
Amer. Math. Soc. 203 (1975), 201–213. MR 0364338
(51 #593), http://dx.doi.org/10.1090/S00029947197503643389
 [20]
J.E. Roos, Sur l'anneau maximal de fractions des algebres et des anneaux de Baer, C. R. Acad. Sci. Paris Sér. AB 266 (1968), A120A123. MR 39 #6093.
 [21]
Bo
Stenström, Rings and modules of quotients, Lecture Notes
in Mathematics, Vol. 237, SpringerVerlag, BerlinNew York, 1971. MR 0325663
(48 #4010)
 [22]
Yuzo
Utumi, On the continuity and selfinjectivity of a complete regular
ring, Canad. J. Math. 18 (1966), 404–412. MR 0223409
(36 #6457)
 [23]
Yuzo
Utumi, On continuous rings and self injective
rings, Trans. Amer. Math. Soc. 118 (1965), 158–173. MR 0174592
(30 #4793), http://dx.doi.org/10.1090/S00029947196501745928
 [24]
Y.
Utumi, On rings of which any onesided
quotient rings are twosided, Proc. Amer. Math.
Soc. 14 (1963),
141–147. MR 0142568
(26 #137), http://dx.doi.org/10.1090/S00029939196301425686
 [25]
Ivan
Vidav, On some *regular rings, Acad. Serbe Sci. Publ. Inst.
Math. 13 (1959), 73–80. MR 0126735
(23 #A4029)
 [1]
 S. K. Berberian, matrices over a finite algebra, Amer. J. Math. 80 (1958), 3744. MR 20 #4790. MR 0098329 (20:4790)
 [2]
 , Baer rings, Grundlehren math. Wiss., Band 195, SpringerVerlag, New York, 1972.
 [3]
 J. E. Burke, On the property (PU) of regular rings, Canad. Math. Bull. 19 (1976), 2138. MR 0417232 (54:5290)
 [4]
 V. C. Cateforis, Flat regular quotient rings, Trans. Amer. Math. Soc. 138 (1969), 241249. MR 39 #259. MR 0238899 (39:259)
 [5]
 K. R. Goodearl, D. Handelman and J. Lawrence, Strongly prime and completely torsion free rings, Carleton Math. Lecture Notes, no. 109, Carleton Univ., Ottawa, Canada, 1974.
 [6]
 I. Hafner, The regular ring and the maximal ring of quotients of a finite Baer ring, Michigan Math. J. 21 (1974), 153160. MR 0342552 (49:7298)
 [7]
 D. Handelman, Strongly prime, simple selfinfective, and completely torsionfree rings, Ph. D. Dissertation, McGill Univ.,1975.
 [8]
 , Perspectivity and cancellation in regular rings, J. Algebra (to appear). MR 0447329 (56:5642)
 [9]
 , Completions of rank rings, Canad. Math. Bull. (to appear). MR 0472898 (57:12584)
 [10]
 J. M. Howie and J. R. Isbell, Epimorphisms and dominions. II, J. Algebra 6 (1967), 721. MR 35 # 105b. MR 0209203 (35:105b)
 [11]
 B. Jónsson, Representations of complemented modular lattices, Trans. Amer. Math. Soc. 97 (1960), 6494. MR 22 # 10932. MR 0120175 (22:10932)
 [12]
 I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math. (2) 61 (1955), 524541. MR 19, 524. MR 0088476 (19:524f)
 [13]
 , Rings of operators, Benjamin, New York, 1968. MR 39 #6092. MR 0244778 (39:6092)
 [14]
 J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966. MR 34 #5857. MR 0206032 (34:5857)
 [15]
 , Localization at epimorphisms and quasiinjectives, J. Algebra 38 (1976), 163181. MR 0453793 (56:12046)
 [16]
 S. Maeda and S. S. Holland, Jr., Equivalence of projections in Baer rings, J. Algebra 39 (1976), 150159. MR 53 #8121. MR 0404319 (53:8121)
 [17]
 J. von Neumann, Continuous geometry, Princeton Univ. Press, Princeton, N. J., 1960. MR 22 #10931. MR 0120174 (22:10931)
 [18]
 N. Prijatelj and I. Vidav, On special regular rings, Michigan Math. J. 18 (1971), 213221. MR 44 #257. MR 0283024 (44:257)
 [19]
 E. Pyle, The regular ring and the maximal ring of quotients of a finite Baer ring, Trans. Amer. Math. Soc. 203 (1975), 201213. MR 51 #593. MR 0364338 (51:593)
 [20]
 J.E. Roos, Sur l'anneau maximal de fractions des algebres et des anneaux de Baer, C. R. Acad. Sci. Paris Sér. AB 266 (1968), A120A123. MR 39 #6093.
 [21]
 B. T. Stenström, Rings and modules of quotients, Lecture Notes in Math., vol. 237, SpringerVerlag, Berlin and New York, 1971. MR 48 #4010. MR 0325663 (48:4010)
 [22]
 Y. Utumi, On the continuity and selfinjectivity of a complete regular ring, Canad. J. Math. 18 (1966), 404412. MR 36 #6457. MR 0223409 (36:6457)
 [23]
 , On continuous rings and selfinjective rings, Trans. Amer. Math. Soc. 118 (1965), 158173. MR 30 #4793. MR 0174592 (30:4793)
 [24]
 , On rings of which any onesided quotient rings are twosided, Proc. Amer. Math. Soc. 14 (1963), 141147. MR 26 # 137. MR 0142568 (26:137)
 [25]
 I. Vidav, On some regular rings, Acad. Serbe Sci. Publ. Inst. Math. 13 (1959), 7380. MR 23 #A4029. MR 0126735 (23:A4029)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
16A28
Retrieve articles in all journals
with MSC:
16A28
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197804632301
PII:
S 00029947(1978)04632301
Keywords:
Finite Baer ring,
epimorphism of ring,
maximal ring of quotients,
complete regular ring,
complemented modular lattice,
continuous geometry
Article copyright:
© Copyright 1978
American Mathematical Society
