A vector lattice topology and function space representation
Authors:
W. A. Feldman and J. F. Porter
Journal:
Trans. Amer. Math. Soc. 235 (1978), 193204
MSC:
Primary 46E05; Secondary 46A40, 54C40
MathSciNet review:
0463897
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A locally convex topology is defined for a vector lattice having a weak order unit and a certain partition of the weak order unit, analogous to the order unit topology. For such spaces, called ``order partition spaces,'' an extension of the classical Kakutani theorem is obtained: Each order partition space is lattice isomorphic and homeomorphic to a dense subspace of containing the constant functions for some locally compact X, and conversely each such is an order partition space. denotes all continuous realvalued functions on X with the topology of compact convergence.) One consequence is a latticetheoretic characterization of for X locally compact and realcompact. Conditions for an Mspace to be an order partition space are provided.
 [1]
Frank
W. Anderson, Approximation in systems of
realvalued continuous functions, Trans. Amer.
Math. Soc. 103
(1962), 249–271. MR 0136976
(25 #436), http://dx.doi.org/10.1090/S00029947196201369760
 [2]
E.
Binz, Notes on a characterization of function algebras, Math.
Ann. 186 (1970), 314–326. MR 0264397
(41 #8992)
 [3]
James
Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass.,
1966. MR
0193606 (33 #1824)
 [4]
W.
A. Feldman and J.
F. Porter, Compact convergence and the order bidual for
𝐶(𝑋), Pacific J. Math. 57 (1975),
no. 1, 113–124. MR 0374878
(51 #11074)
 [5]
W.
A. Feldman and J.
F. Porter, Order units and base norms generalized for convex
spaces, Proc. London Math. Soc. (3) 33 (1976),
no. 2, 299–312. MR 0417740
(54 #5788)
 [6]
D.
H. Fremlin, Topological Riesz spaces and measure theory,
Cambridge University Press, LondonNew York, 1974. MR 0454575
(56 #12824)
 [7]
M.
Henriksen and D.
G. Johnson, On the structure of a class of archimedean
latticeordered algebras., Fund. Math. 50
(1961/1962), 73–94. MR 0133698
(24 #A3524)
 [8]
Edwin
Hewitt, Linear functionals on spaces of continuous functions,
Fund. Math. 37 (1950), 161–189. MR 0042684
(13,147g)
 [9]
Graham
J. O. Jameson, Topological 𝑀spaces, Math. Z.
103 (1968), 139–150. MR 0222605
(36 #5655)
 [10]
Shizuo
Kakutani, Concrete representation of abstract (𝑀)spaces.
(A characterization of the space of continuous functions.), Ann. of
Math. (2) 42 (1941), 994–1024. MR 0005778
(3,205g)
 [11]
R.
G. Kuller, Locally convex topological vector lattices and their
representations., Michigan Math. J. 5 (1958),
83–90. MR
0097706 (20 #4173)
 [12]
Anthony
L. Peressini, Ordered topological vector spaces, Harper &
Row, Publishers, New YorkLondon, 1967. MR 0227731
(37 #3315)
 [13]
Donald
Plank, Closed 𝑙ideals in a class of latticeordered
algebras, Illinois J. Math. 15 (1971), 515–524.
MR
0280423 (43 #6143)
 [14]
Claude
Portenier, Espaces de Riesz, espaces de fonctions et espaces de
sections, Comment. Math. Helv. 46 (1971),
289–313 (French). MR 0291764
(45 #855)
 [1]
 F. W. Anderson, Approximation in systems of realvalued functions, Trans. Amer. Math. Soc. 103 (1962), 249271. MR 25 #436. MR 0136976 (25:436)
 [2]
 E. Binz, Notes on a characterization of function algebras, Math. Ann. 186 (1970), 314326. MR 41 #8992. MR 0264397 (41:8992)
 [3]
 J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
 [4]
 W. A. Feldman and J. F. Porter, Compact convergence and the order bidual for , Pacific J. Math. 57 (1975), 113124. MR 51 #11074. MR 0374878 (51:11074)
 [5]
 , Order units and base norms generalized for convex spaces, Proc. London Math. Soc. (3) 33 (1976), 299312. MR 0417740 (54:5788)
 [6]
 D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge Univ. Press, London, 1974. MR 0454575 (56:12824)
 [7]
 M. Henriksen and D. G. Johnson, On the structure of a class of archimedean latticeordered algebras, Fund. Math. 50 (1961), 7394. MR 24 #A3524. MR 0133698 (24:A3524)
 [8]
 E. Hewitt, Linear functionals on spaces of continuous functions, Fund. Math. 37 (1950), 161189. MR 13, 147. MR 0042684 (13:147g)
 [9]
 G. J. O. Jameson, Topological Mspaces, Math. Z. 103 (1968), 139150. MR 36 #5655. MR 0222605 (36:5655)
 [10]
 S. Kakutani, Concrete representation of abstract (M)spaces, Ann. of Math. (2) 42 (1941), 9941028. MR 3, 205. MR 0005778 (3:205g)
 [11]
 R. G. Kuller, Locally convex topological vector lattices and their representations, Michigan Math. J. 5 (1958), 8390. MR 20 #4173. MR 0097706 (20:4173)
 [12]
 A. L. Peressini, Ordered topological vector spaces, Harper and Row, New York, 1967. MR 37 #3315. MR 0227731 (37:3315)
 [13]
 D. Plank, Closed lideals in a class of latticeordered algebras, Illinois J. Math. 15 (1971), 515524. MR 43 #6143. MR 0280423 (43:6143)
 [14]
 C. Portenier, Espaces de Riesz, espaces de fonctions et espaces de sections, Comment. Math. Helv. 46 (1971), 289313. MR 45 #855. MR 0291764 (45:855)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
46E05,
46A40,
54C40
Retrieve articles in all journals
with MSC:
46E05,
46A40,
54C40
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197804638978
PII:
S 00029947(1978)04638978
Keywords:
Compact convergence,
function space,
topological Mspace,
vector lattice,
weak order unit
Article copyright:
© Copyright 1978
American Mathematical Society
