Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Bases for the positive cone of a partially ordered module


Author: W. Russell Belding
Journal: Trans. Amer. Math. Soc. 235 (1978), 305-313
MSC: Primary 06A75
DOI: https://doi.org/10.1090/S0002-9947-1978-0472640-8
MathSciNet review: 0472640
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: $ (R,{R^ + })$ is a partially ordered ring and $ (M,{M^ + })$ is a strict $ (R,{R^ + })$-module. So M is a left R-module and $ ({R^ + }\backslash \{ 0\} )({M^ + }\backslash \{ 0\} ) \subseteq {M^ + }\backslash \{ 0\} $. Let $ \leqslant '$ be the order induced on M by $ {M^ + }.B \subseteq {M^ + }$ is an $ {R^ + }$-basis for $ {M^ + }$ means $ {R^ + }B = {M^ + }$ (spanning) and if r is in R, b in B with $ 0 < 'rb \leqslant 'b$ then $ rb \notin {R^ + }(B\backslash \{ b\} )$ (independence).

Result: If B and D are $ {R^ + }$-bases for $ {M^ + }$ then card $ B = $ card D and to within a permutation $ {b_i} = {u_i}{d_i}$, for units $ {u_i}$ of $ {R^ + }$.


References [Enhancements On Off] (What's this?)

  • [1] M. N. Bleicher and E. Marczewski, Remarks on dependence relations and closure operators, Colloq. Math. 9 (1962), 209-212. MR 26 #58. MR 0142489 (26:58)
  • [2] M. N. Bleicher and H. Schneider, The decomposition of cones in modules over ordered rings, J. Algebra 1 (1964), 233-258. MR 29 #5866. MR 0168606 (29:5866)
  • [3] P. M. Cohn, Universal algebra, Harper and Row, New York, 1965. MR 31 #224; erratum 32, p. 1754. MR 0175948 (31:224)
  • [4] L. Fuchs, Partially ordered algebraic systems, Addison-Wesley, Reading, Mass., 1963. MR 30 #2090. MR 0171864 (30:2090)
  • [5] G. A. Heuer, Discrete ordered rings, Fund. Math. 85 (1974), no. 2 121-138. MR 49 #8915. MR 0344175 (49:8915)
  • [6] N. Jacobson, Lectures in abstract algebra. II, Van Nostrand, Princeton, N.J., 1953. MR 14, 837. MR 0053905 (14:837e)
  • [7] P. Ribenboim, On ordered modules, J. Reine Angew. Math. 225 (1967), 120-146. MR 34 #5877. MR 0206052 (34:5877)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06A75

Retrieve articles in all journals with MSC: 06A75


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0472640-8
Keywords: Partially ordered ring, partially ordered module, directed, order preserving automorphism group, closure operator
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society