Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The homological dimensions of symmetric algebras


Author: James E. Carrig
Journal: Trans. Amer. Math. Soc. 236 (1978), 275-285
MSC: Primary 13D05
DOI: https://doi.org/10.1090/S0002-9947-1978-0457425-0
MathSciNet review: 0457425
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let D be a Dedekind domain and M a rank-one torsion-free D-module. An analysis of $ A = {S_D}(M)$, the symmetric algebra of M, yields the following information:

Theorem. (1) Tor-dim $ A \leqslant 2\;and\; = 1\;iff\;M = K$, the quotient field of D;

(2) A is coherent;

(3) Global $ \dim A = 2$.

For higher rank modules coherence is not assured and only rough estimates of the dimensions are found.

On the other hand, if $ {S_D}(M)$ is a domain of global dimension two, then M has rank one but the dimension of D may be two. If D is local of dimension two then $ M = K$.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Algebra. I, Addison-Wesley, Reading, Mass., 1974.
  • [2] -, Algèbre commutative. Chapters I, II, Hermann, Paris, 1961.
  • [3] D. Dobbs, On the global dimension of $ D + M$ (preprint).
  • [4] B. Greenberg, Global dimension of cartesian squares, J. Algebra 32 (1974), 31-43. MR 0364233 (51:488)
  • [5] L. Gruson and M. Raynaud, Critères de platitude et de projectivitè, Invent Math. 13 (1971), 1-89. MR 0308104 (46:7219)
  • [6] C. U. Jensen, Homological dimension of rings with countably generated ideals, Math. Scand. 18 (1966), 97-105. MR 0207796 (34:7611)
  • [7] I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR 0254021 (40:7234)
  • [8] D. Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81-128. MR 0254100 (40:7310)
  • [9] B. Osofsky, Global dimension of valuation rings, Trans. Amer. Math. Soc. 126 (1967), 136-149. MR 0206074 (34:5899)
  • [10] H. Sheng, Finiteness in prime ideals in rings of global dimension two, Proc. Amer. Math. Soc. 41 (1973), 363-369. MR 0327739 (48:6081)
  • [11] W. Vasconcelos, The local rings of global dimension two, Proc. Amer. Math. Soc. 35 (1972), 381-386. MR 0308115 (46:7230)
  • [12] -, Rings of global dimension two, Proc. Conf. Comm. Algebra, Lecture Notes in Math., vol. 311, Springer-Verlag, Berlin and New York, 1973. MR 0340239 (49:4994)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13D05

Retrieve articles in all journals with MSC: 13D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0457425-0
Keywords: Global dimension, Tor-dimension, coherent, symmetric algebra, Dede-kind domain, rank one flat module
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society