Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Spectral theory for contraction semigroups on Hilbert space


Author: Larry Gearhart
Journal: Trans. Amer. Math. Soc. 236 (1978), 385-394
MSC: Primary 47D05
DOI: https://doi.org/10.1090/S0002-9947-1978-0461206-1
MathSciNet review: 0461206
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we determine the relationship between the spectra of a continuous contraction semigroup on Hilbert space and properties of the resolvent of its infinitesimal generator. The methods rely heavily on dilation theory. In particular, we reduce the general problem to the case that the cogenerator of the semigroup has a characteristic function with unitary boundary values. We then complete the analysis by generalizing the scalar result of J. W. Moeller on compressions of the translation semigroup to the case of infinite multiplicity.


References [Enhancements On Off] (What's this?)

  • [1] R. G. Douglas, P. S. Muhly and C. Pearcy, Lifting commuting operators, Michigan Math. J. 15 (1968), 385-395. MR 38 #5046. MR 0236752 (38:5046)
  • [2] Paul Fuhrmann, On the corona theorem and its application to spectral problems in Hilbert space, Trans. Amer. Math. Soc. 132 (1968), 55-66. MR 36 #5751. MR 0222701 (36:5751)
  • [3] -, A functional calculus in Hilbert space based on operator valued analytic functions, Israel J. Math. 6 (1968), 267-278. MR 38 #5029. MR 0236735 (38:5029)
  • [4] L. Gearhart, On the spectral theory of the translation semigroup and its commutant, Thesis, Univ. of Illinois, Chicago, 1975.
  • [5] Paul Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112. MR 27 #2868. MR 0152896 (27:2868)
  • [6] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., vol. 31, rev. ed., Amer. Math. Soc., Providence, R.I., 1957. MR 19, 664. MR 0089373 (19:664d)
  • [7] P. D. Lax, Translation invariant spaces, Acta Math. 101 (1959), 163-178. MR 21 #4359. MR 0105620 (21:4359)
  • [8] P. D. Lax and R. S. Phillips, Scattering theory, Academic Press, New York, 1967. MR 36 #530. MR 0217440 (36:530)
  • [9] J. W. Moeller, On the spectra of some translation invariant spaces, J. Math. Anal. Appl. 4 (1962), 276-296. MR 27 #588. MR 0150592 (27:588)
  • [10] -, Translation invariant subspaces with zero-free spectra, Duke Math. J. 31 (1964), 99-108. MR 29 #5103. MR 0167837 (29:5103)
  • [11] R. S. Phillips, Spectral theory for semigroups of linear operators, Trans. Amer. Math. Soc. 71 (1951), 393-415. MR 13, 469. MR 0044737 (13:469c)
  • [12] B. Sz.-Nagy and C. Foiaş, Harmonic analysis of operators on Hilbert space, Masson, Paris; Akad. Kiadó, Budapest 1967; English rev. transl., North-Holland, Amsterdam; American Elsevier, New York; Akad. Kiadó, Budapest 1970. MR 37 #778; 43 #947. MR 0275190 (43:947)
  • [13] -, On the structure of intertwining operators, Acta Sci. Math. 35 (1973), 225-254. MR 0399896 (53:3737)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47D05

Retrieve articles in all journals with MSC: 47D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0461206-1
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society