Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Approximation theorems for uniformly continuous functions


Author: Anthony W. Hager
Journal: Trans. Amer. Math. Soc. 236 (1978), 263-273
MSC: Primary 41A65; Secondary 41A30
MathSciNet review: 0510848
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let X be a set, A a family of real-valued functions on X which contains the constants, $ {\mu _A}$ the weak uniformity generated by A, and $ U({\mu _A}X)$ the collection of uniformly continuous functions to the real line R. The problem is how to construct $ U({\mu _A}X)$ from A. The main result here is: For A a vector lattice, the collection of suprema of countable, finitely A-equiuniform, order-one subsets of $ {A^ + }$ is uniformly dense in $ U({\mu _A}X)$. Two less technical corollaries: If A is a vector lattice (resp., vector space), then the collection of functions which are finitely A-uniform and uniformly locally-A (resp., uniformly locally piecewise-A) is uniformly dense in $ U({\mu _A}X)$. Further, for any A, a finitely A-uniform function is just a composition $ F \circ ({a_1}, \ldots ,{a_p})$ for some $ {a_1}, \ldots ,{a_p} \in A$ and F uniformly continuous on the range of $ ({a_1}, \ldots ,{a_p})$ in $ {R^p}$. Thus, such compositions are dense in $ U({\mu _A}X)$. For $ BU({\mu _A}X)$, the compositions with $ F \in BU({R^p})$ are dense (B denoting bounded functions). So, in a sense, to know $ U({\mu _A}X)$ it suffices to know A and subspaces of the spaces $ {R^p}$, and to know $ BU({\mu _A}X)$, A and the spaces $ {R^p}$ suffice.


References [Enhancements On Off] (What's this?)

  • [C] Á. Császár, Gleichmässige Approximation und gleichmässige Stetigkeit, Acta Math. Acad. Sci. Hungar. 20 (1969), 253–261 (German). MR 0253277
  • [F] Jens Erik Fenstad, On 𝑙-groups of uniformly continuous functions. I. Approximation theory, Math. Z. 82 (1963), 434–444. MR 0159215
  • [F] Jens Erik Fenstad, On 𝑙-groups of uniformly continuous functions. II. Representation theory, Math. Z. 83 (1964), 46–56. MR 0171262
  • [H] Anthony W. Hager, Vector lattices of uniformly continuous functions and some categorical methods in uniform spaces, TOPO 72—general topology and its applications (Proc. Second Pittsburgh Internat. Conf. Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), Springer, Berlin, 1974, pp. 172–187. Lecture Notes in Math., Vol. 378. MR 0362236
  • [I] J. R. Isbell, Algebras of uniformly continuous functions, Ann. of Math. (2) 68 (1958), 96–125. MR 0103407
  • [I] J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR 0170323
  • [K] M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85–91. MR 0050264
  • [M] Wilhelm Maak, Eine Verallgemeinerung des Weierstrassschen Approximationssatzes, Arch. Math. (Basel) 6 (1955), 188–193 (German). MR 0069256
  • [NB] Georg Nöbeling and Heinz Bauer, Allgemeine Approximationskriterien mit Anwendungen, Jber. Deutsch. Math. Verein. 58 (1955), no. Abt. 1, 54–72 (German). MR 0074555

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A65, 41A30

Retrieve articles in all journals with MSC: 41A65, 41A30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1978-0510848-3
Keywords: Stone-Weierstrass, uniformly continuous, uniform approximation
Article copyright: © Copyright 1978 American Mathematical Society