Replacing homotopy actions by topological actions

Author:
George Cooke

Journal:
Trans. Amer. Math. Soc. **237** (1978), 391-406

MSC:
Primary 57E99; Secondary 55D10

DOI:
https://doi.org/10.1090/S0002-9947-1978-0461544-2

MathSciNet review:
0461544

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A homotopy action of a group *G* on a space *X* is a homomorphism from *G* to the group of homotopy classes of homotopy equivalences of *X*. The question studied in this paper is: When is a homotopy action equivalent, in an appropriate sense, to a topological action of *G* on *X*?

**[1]**J. F. Adams,*A variant of E. H. Brown's representability theorem*, Topology**10**(1971), 185-198. MR**0283788 (44:1018)****[2]**Guy Allaud,*On the classification of fibre spaces*, Math. Z.**92**(1966), 110-125. MR**0189035 (32:6462)****[3]**A. K. Bousfield,*The localization of a space with respect to homology*, Topology**14**(1975), 133-150. MR**0380779 (52:1676)****[4]**A. K. Bousfield and D. M. Kan,*Homotopy limits, completions, and localizations*, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972. MR**0365573 (51:1825)****[5]**G. E. Cooke,*Constructing spaces with interesting*-*cohomology via*-*actions on loop spaces*, Cornell Univ. (preprint).**[6]**P. Hilton,*Homotopy theory and duality*, Gordon & Breach, New York, 1965. MR**0198466 (33:6624)****[7]**James D. Stasheff,*A classification theorem for fibre spaces*, Topology**2**(1963), 239-246. MR**0154286 (27:4235)****[8]**D. Sullivan,*Geometric topology, Part*I:*Localization,periodicity, and Galois symmetry*, M.I.T. Press, Cambridge, Mass., 1970. MR**0494074 (58:13006a)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57E99,
55D10

Retrieve articles in all journals with MSC: 57E99, 55D10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1978-0461544-2

Article copyright:
© Copyright 1978
American Mathematical Society