Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Spectral properties of tensor products of linear operators. II. The approximate point spectrum and Kato essential spectrum


Author: Takashi Ichinose
Journal: Trans. Amer. Math. Soc. 237 (1978), 223-254
MSC: Primary 47A10
DOI: https://doi.org/10.1090/S0002-9947-1978-0479372-0
MathSciNet review: 479372
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For tensor products of linear operators, their approximate point spectrum, approximate deficiency spectrum and essential spectra in the sense of T. Kato and Gustafson-Weidmann are determined together with explicit formulae for their nullity and deficiency. The theory applies to $ A \otimes I + I \otimes B$ and $ A \otimes B$.


References [Enhancements On Off] (What's this?)

  • [1] M. D. Choi and C. Davis, The spectral mapping theorem for joint approximate point spectrum, Bull. Amer. Math. Soc. 80 (1974), 317-321. MR 0333780 (48:12104)
  • [2] J. Gil de Lamadrid, Uniform cross-norms and tensor products of Banach algebras, Duke Math. J. 32 (1965), 359-368. MR 0190714 (32:8125)
  • [3] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16,1955. MR 0075539 (17:763c)
  • [4] -, Resumé de la théorie métrique des produits tensoriels topologiques, Bol Soc. Mat. São Paulo 8 (1956). MR 0094682 (20:1194)
  • [5] K. Gustafson and J. Weidmann, On the essential spectrum, J. Math. Anal. Appl. 25 (1969), 121-127. MR 0242004 (39:3339)
  • [6] H. Hefer, Zur Funktionentheorie mehrerer Veränderlichen. Über eine Zerlegung analytischer Funktionen und die Weilsche Integraldarstellung, Math. Ann. 122 (1950), 276-278. MR 0039082 (12:493f)
  • [7] E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I, 1957. MR 0089373 (19:664d)
  • [8] T. Ichinose, On the spectra of tensor products of linear operators in Banach spaces, J. Reine Angew. Math. 244 (1970), 119-153. MR 0278096 (43:3828)
  • [9] -, Operational calculus for tensor products of linear operators in Banach spaces, Hokkaido Math. J. 4 (1975), 306-333. MR 0374958 (51:11154)
  • [10] -, Operators on tensor products of Banach spaces, Trans. Amer. Math. Soc. 170 (1972), 197-219. MR 0322553 (48:915)
  • [11] -, Spectral properties of tensor products of linear operators, Trans. Amer. Math. Soc. 235 (1978), 75-113. MR 472915 (80a:47005a)
  • [12] T. Kato, Perturbation theory for nullity, deficiency, and other quantities of linear operators, J. Analyse Math. 11 (1958), 261-322. MR 0107819 (21:6541)
  • [13] -, Perturbation theory for linear operators, Springer-Verlag, Berlin and New York; 1966. MR 0203473 (34:3324)
  • [14] G. Köthe, General linear transformations of locally convex spaces, Math. Ann. 159 (1965), 309-328. MR 0192347 (33:573)
  • [15] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Springer-Verlag, Berlin and New York, 1973. MR 0415253 (54:3344)
  • [16] M. Reed and B. Simon, Tensor products of closed operators on Banach spaces, J. Functional Anal. 13 (1973), 107-124. MR 0348538 (50:1036)
  • [17] R. Schatten, A theory of cross-spaces, Ann. of Math. Studies, No. 26, Princeton Univ. Press, Princeton, N. J., 1950. MR 0036935 (12:186e)
  • [18] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148. MR 0346555 (49:11280)
  • [19] A. Taylor, Introduction to functional analysis, Wiley, New York, 1958. MR 0098966 (20:5411)
  • [20] J. Tomiyama, Tensor products of commutative Banach algebras, Tôhoku Math. J. 12 (1960), 147-154. MR 0115108 (22:5910)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A10

Retrieve articles in all journals with MSC: 47A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0479372-0
Keywords: Topological tensor products, operators on tensor products of Banach spaces, separation of variables, spectral mapping theorem, spectrum, approximate point spectrum, essential spectrum, semi-Fredholm operator, nullity and deficiency of operators
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society