Nonlinear operations and the solution of integral equations

Author:
Jon C. Helton

Journal:
Trans. Amer. Math. Soc. **237** (1978), 373-390

MSC:
Primary 45N05; Secondary 46G99, 47H99

DOI:
https://doi.org/10.1090/S0002-9947-1978-0479379-3

MathSciNet review:
479379

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The letters *S, G* and *H* denote a linearly ordered set, a normed complete Abelian group with zero element 0, and the set of functions from *G* to *G* that map 0 into 0, respectively. In addition, if and there exists an additive function from to the nonnegative numbers such that for each in , then only if exists for each in , and only if exists for each in . It is established that if, and only if, . Then, this relationship is used in the solution of integral equations of the form , where *U* and *V* are in . This research extends known results in that requirements pertaining to the additivity of *U* and *V* are weakened.

**[1]**William D. L. Appling,*Interval functions and real Hilbert spaces*, Rend. Circ. Mat. Palermo (2)**11**(1962), 154–156. MR**0154081**, https://doi.org/10.1007/BF02843951**[2]**Burrell W. Helton,*Integral equations and product integrals*, Pacific J. Math.**16**(1966), 297–322. MR**0188731****[3]**Jon C. Helton,*An existence theorem for sum and product integrals*, Proc. Amer. Math. Soc.**39**(1973), 149–154. MR**0317048**, https://doi.org/10.1090/S0002-9939-1973-0317048-1**[4]**Jon C. Helton,*Mutual existence of sum and product integrals*, Pacific J. Math.**56**(1975), no. 2, 495–516. MR**0405098****[5]**Jon C. Helton,*Product integrals and the solution of integral equations*, Pacific J. Math.**58**(1975), no. 1, 87–103. MR**0385480****[6]**Jon C. Helton,*Existence of integrals and the solution of integral equations*, Trans. Amer. Math. Soc.**229**(1977), 307–327. MR**0445245**, https://doi.org/10.1090/S0002-9947-1977-0445245-1**[7]**Jon Helton and Stephen Stuckwisch,*Numerical approximation of product integrals*, J. Math. Anal. Appl.**56**(1976), no. 2, 410–437. MR**0428688**, https://doi.org/10.1016/0022-247X(76)90053-6**[8]**J. V. Herod,*Coalescence of solutions for nonlinear Stieltjes equations*, J. Reine Angew. Math.**252**(1972), 187–194. MR**0291908**, https://doi.org/10.1515/crll.1972.252.187**[9]**Alvin J. Kay,*Nonlinear integral equations and product integrals*, Pacific J. Math.**60**(1975), no. 1, 203–222. MR**0399781****[10]**J. S. MacNerney,*Integral equations and semigroups*, Illinois J. Math.**7**(1963), 148–173. MR**0144179****[11]**J. S. MacNerney,*A nonlinear integral operation*, Illinois J. Math.**8**(1964), 621–638. MR**0167815****[12]**P. R. Masani,*Multiplicative Riemann integration in normed rings*, Trans. Amer. Math. Soc.**61**(1947), 147–192. MR**0018719**, https://doi.org/10.1090/S0002-9947-1947-0018719-6**[13]**J. W. Neuberger,*Toward a characterization of the identity component of rings and near-rings of continuous transformations*, J. Reine Angew. Math.**238**(1969), 100–104. MR**0250144**, https://doi.org/10.1515/crll.1969.238.100

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
45N05,
46G99,
47H99

Retrieve articles in all journals with MSC: 45N05, 46G99, 47H99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1978-0479379-3

Keywords:
Sum integral,
product integral,
subdivision-refinement integral,
nonlinear integral equation

Article copyright:
© Copyright 1978
American Mathematical Society