Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Segal algebras on non-abelian groups


Authors: Ernst Kotzmann and Harald Rindler
Journal: Trans. Amer. Math. Soc. 237 (1978), 271-281
MSC: Primary 43A15
DOI: https://doi.org/10.1090/S0002-9947-1978-0487277-4
MathSciNet review: 0487277
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {S^1}(G)$ be a Segal algebra on a locally compact group. The central functions of $ {S^1}(G)$ are dense in the center of $ {L^1}(G)$. $ {S^1}(G)$ has central approximate units iff G $ G \in [SIN]$. This is a generalization of a result of Reiter on the one hand and of Mosak on the other hand. The proofs depend on the structure theorems of [SIN]- and [IN]-groups. In the second part some new examples of Segal algebras are constructed. A locally compact group is discrete or Abelian iff every Segal algebra is right-invariant. As opposed to the results, the proofs are not quite obvious.


References [Enhancements On Off] (What's this?)

  • [1] S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1-40. MR 0284541 (44:1766)
  • [2] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin and New York, 1963. MR 551496 (81k:43001)
  • [3] B. E. Johnson, Some examples in harmonic analysis, Studia Math. 48 (1973), 181-188. MR 0338692 (49:3456)
  • [4] E. Kotzmann and H. Rindler, Central approximate units in a certain ideal of $ {L^1}(G)$, Proc. Amer. Math. Soc. 57 (1976), 155-158. MR 0404988 (53:8784)
  • [5] J. Liukkonen and R. Mosak, Harmonic analysis and centers of group algebras, Trans. Amer. Math. Soc. 195 (1974), 147-163. MR 0350322 (50:2815)
  • [6] R. D. Mosak, Central functions in group algebras, Proc. Amer. Math. Soc. 29 (1971), 613-616. MR 0279602 (43:5323)
  • [7] H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Math. Monographs, Oxford Univ. Press, Oxford, 1968. MR 0306811 (46:5933)
  • [8] -, $ {L^1}$-algebras and Segal algebras, Lecture Notes in Math., vol. 231, Springer, Berlin and New York, 1971. MR 0440280 (55:13158)
  • [9] S. B. Strunkov, Topological Hamiltonian groups, Uspehi Mat. Nauk. 20 (1965), No. 6 (126), 157-161. (Russian). MR 0194548 (33:2758)
  • [10] A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1951.
  • [11] A. B. Willcox, Note on certain group algebras, Proc. Amer. Math. Soc. 7 (1956), 874-879. MR 0085477 (19:46d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A15

Retrieve articles in all journals with MSC: 43A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0487277-4
Keywords: Locally compact group, group algebra, Segal algebra, center of an algebra, central function, approximate unit, compact invariant neighbourhood
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society