Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Necessary and sufficient conditions for the $ {\rm GHS}$ inequality with applications to analysis and probability


Authors: Richard S. Ellis and Charles M. Newman
Journal: Trans. Amer. Math. Soc. 237 (1978), 83-99
MSC: Primary 26A84; Secondary 35K99, 60J99, 82.60
MathSciNet review: 0492131
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The GHS inequality is an important tool in the study of the Ising model of ferromagnetism (a model in equilibrium statistical mechanics) and in Euclidean quantum field theory. This paper derives necessary and sufficient conditions on an Ising spin system for the GHS inequality to be valid. Applications to convexity-preserving properties of certain differential equations and diffusion processes are given.


References [Enhancements On Off] (What's this?)

  • [BJS] Lipman Bers, Fritz John, and Martin Schechter, Partial differential equations, Lectures in Applied Mathematics, Vol. III, Interscience Publishers John Wiley & Sons, Inc. New York-London-Sydney, 1964. MR 0163043
  • [BL] Herm Jan Brascamp and Elliott H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22 (1976), no. 4, 366–389. MR 0450480
  • [C] Paul R. Chernoff, Note on product formulas for operator semigroups, J. Functional Analysis 2 (1968), 238–242. MR 0231238
  • [EMN] Richard S. Ellis, James L. Monroe, and Charles M. Newman, The GHS and other correlation inequalities for a class of even ferromagnets, Comm. Math. Phys. 46 (1976), no. 2, 167–182. MR 0395659
  • [F] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
  • [GS] I. I. Gikhman and A. V. Skorokhod, Introduction to the theory of random processes, Translated from the Russian by Scripta Technica, Inc, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969. MR 0247660
  • [G] Robert B. Griffiths, Rigorous results for Ising ferromagnets of arbitrary spin, J. Mathematical Phys. 10 (1969), 1559–1565. MR 0256682
  • [GHS] Robert B. Griffiths, C. A. Hurst, and S. Sherman, Concavity of magnetization of an Ising ferromagnet in a positive external field, J. Mathematical Phys. 11 (1970), 790–795. MR 0266507
  • [K] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
  • [M] Petr Mandl, Analytical treatment of one-dimensional Markov processes, Die Grundlehren der mathematischen Wissenschaften, Band 151, Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York, 1968. MR 0247667
  • [S1] Barry Simon, Coupling constant analyticity for the anharmonic oscillator. (With appendix), Ann. Physics 58 (1970), 76–136. MR 0416322
  • [S2] Barry Simon, The 𝑃(𝜑)₂ Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J., 1974. Princeton Series in Physics. MR 0489552
  • [S3] Barry Simon, Approximation of Feynman integrals and Markov fields by spin systems, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 399–402. MR 0441161
  • [Sy] Garrett S. Sylvester, Representations and inequalities for Ising model Ursell functions, Comm. Math. Phys. 42 (1975), 209–220. MR 0406301
  • [Th] Colin J. Thompson, Mathematical statistical mechanics, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1972. A Series of Books in Applied Mathematics. MR 0469020
  • [Ti] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Oxford, at the Clarendon Press, 1946 (German). MR 0019765

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A84, 35K99, 60J99, 82.60

Retrieve articles in all journals with MSC: 26A84, 35K99, 60J99, 82.60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1978-0492131-8
Keywords: GHS inequality, Ising model, convex function, parabolic partial differential equation
Article copyright: © Copyright 1978 American Mathematical Society