Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Necessary and sufficient conditions for the $ {\rm GHS}$ inequality with applications to analysis and probability


Authors: Richard S. Ellis and Charles M. Newman
Journal: Trans. Amer. Math. Soc. 237 (1978), 83-99
MSC: Primary 26A84; Secondary 35K99, 60J99, 82.60
DOI: https://doi.org/10.1090/S0002-9947-1978-0492131-8
MathSciNet review: 0492131
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The GHS inequality is an important tool in the study of the Ising model of ferromagnetism (a model in equilibrium statistical mechanics) and in Euclidean quantum field theory. This paper derives necessary and sufficient conditions on an Ising spin system for the GHS inequality to be valid. Applications to convexity-preserving properties of certain differential equations and diffusion processes are given.


References [Enhancements On Off] (What's this?)

  • [BJS] L. Bers, F. John and M. Schechter, Partial differential equations, Interscience, New York, 1964. MR 29 #346. MR 0163043 (29:346)
  • [BL] H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions and with an application to the diffusion equation, J. Functional Anal. 22 (1976), 366-389. MR 0450480 (56:8774)
  • [C] P. R. Chernoff, Note on product formulas for operator semigroups, J. Functional Analysis 2 (1968), 238-242. MR 37 #6793. MR 0231238 (37:6793)
  • [EMN] R. S. Ellis, J. L. Monroe and C. M. Newman, The GHS and other correlation inequalities for a class of even ferromagnets, Comm. Math. Phys. 46 (1976), 167-182. MR 0395659 (52:16453)
  • [F] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 31 #6062. MR 0181836 (31:6062)
  • [GS] I. Gihman and A. Skorohod, Introduction to the theory of random processes, ``Nauka", Moscow, 1965; English transl., Saunders, Philadelphia, Pa., 1969. MR 33 #6689; 40 #923. MR 0247660 (40:923)
  • [G] R. B. Griffiths, Rigorous results for Ising ferromagnets of arbitrary spin, J. Mathematical Phys. 10 (1969), 1559-1565. MR 41 # 1338. MR 0256682 (41:1338)
  • [GHS] R. B. Griffiths, C. A. Hurst and S. Sherman, Concavity of magnetization of an Ising ferromagnet in a positive external field, J. Mathematical Phys. 11 (1970), 790-795. MR 42 # 1412. MR 0266507 (42:1412)
  • [K] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
  • [M] P. Mandl, Analytical treatment of one-dimensional Markov processes, Academia, Prague; Springer-Verlag, Berlin and New York, 1968. MR 40 #930. MR 0247667 (40:930)
  • [S1] B. Simon, Coupling constant analyticity for the anharmonic oscillator, Ann. Physics 58 (1970), 76-136. MR 0416322 (54:4397)
  • [S2] -, The $ P{(\varphi )_2}$ Euclidean (quantum) field theory, Princeton Univ. Press, Princeton, N. J., 1974. MR 0489552 (58:8968)
  • [S3] -, Approximation of Feynman integrals and Markov fields by spin systems, Proc. Internat, Congress Math., Vol. 2 (Vancouver, B. C, 1974), Canad. Math. Congress, 1975, pp. 399-402. MR 0441161 (55:14025)
  • [Sy] G. Sylvester, Continuous spin inequalities for Ising ferromagnets, Harvard/M.I.T., 1975 (preprint). MR 0406301 (53:10092)
  • [Th] C. Thompson, Mathematical statistical mechanics, Macmillan, New York, 1972. MR 0469020 (57:8821)
  • [Ti] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Clarendon Press, Oxford, 1946. MR 8, 458. MR 0019765 (8:458d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A84, 35K99, 60J99, 82.60

Retrieve articles in all journals with MSC: 26A84, 35K99, 60J99, 82.60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0492131-8
Keywords: GHS inequality, Ising model, convex function, parabolic partial differential equation
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society