Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Bounded point evaluations and smoothness properties of functions in $ R\sp{p}(X)$


Author: Edwin Wolf
Journal: Trans. Amer. Math. Soc. 238 (1978), 71-88
MSC: Primary 46E99
DOI: https://doi.org/10.1090/S0002-9947-1978-0470679-X
MathSciNet review: 0470679
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let X be a compact subset of the complex plane C. We denote by $ {R_0}(X)$ the algebra consisting of the (restrictions to X of) rational functions with poles off X. Let m denote 2-dimensional Lebesgue measure. For $ p \geqslant 1$, let $ {L^p}(X) = {L^p}(X,dm)$. The closure of $ {R_0}(X)$ in $ {L^p}(X)$ will be denoted by $ {R^p}(X)$. Whenever p and q both appear, we assume that $ 1/p + 1/q = 1$.

If x is a point in X which admits a bounded point evaluation on $ {R^p}(X)$, then the map which sends f to $ f(x)$ for all $ f \in {R_0}(X)$ extends to a continuous linear functional on $ {R^p}(X)$. The value of this linear functional at any $ f \in {R^p}(X)$ is denoted by $ f(x)$. We examine the smoothness properties of functions in $ {R^p}(X)$ at those points which admit bounded point evaluations. For $ p > 2$ we prove in Part I a theorem that generalizes the ``approximate Taylor theorem'' that James Wang proved for $ R(X)$.

In Part II we generalize a theorem of Hedberg about the convergence of a certain capacity series at a point which admits a bounded point evaluation. Using this result, we study the density of the set X at such a point.


References [Enhancements On Off] (What's this?)

  • [1] J. Brennan, Point evaluations and invariant subspaces, Doctoral Dissertation, Brown Univ., Providence, R.I., 1968.
  • [2] -, Invariant subspaces and rational approximation, J. Functional Analysis 7 (1971), 285-310. MR 0423059 (54:11042)
  • [3] Andrew Browder, Introduction to function algebras, Benjamin, New York, 1969. MR 39 #7431. MR 0246125 (39:7431)
  • [4] Jacques Deny, Sur la convergence de certaines intégrales de la théorie du potentiel, Arch. Math. 5 (1954), 367-370. MR 16, 589. MR 0066513 (16:589b)
  • [5] Herbert Federer, Geometric measure theory, Springer-Verlag, New York, 1969. MR 41 #1976. MR 0257325 (41:1976)
  • [6] W. H. J. Fuchs, Topics in the theory of functions of one complex variable, Van Nostrand, Princeton, N.J., 1967. MR 36 #3954. MR 0220902 (36:3954)
  • [7] T. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969. MR 0410387 (53:14137)
  • [8] L. I. Hedberg, Approximation in the mean by analytic functions, Trans. Amer. Math. Soc. 163 (1972), 157-171. MR 0432886 (55:5866)
  • [9] -, Bounded point evaluations and capacity, J. Functional Analysis 10 (1972), 269-280. MR 50 #4980. MR 0352493 (50:4980)
  • [10] L. H. Helms, Introduction to potential theory, Interscience, New York, 1969. MR 41 #5638.
  • [11] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin and New York, 1972. MR 50 #2520. MR 0350027 (50:2520)
  • [12] L. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, Princeton, N.J., 1953. MR 14, 883. MR 0054173 (14:883c)
  • [13] A. G. O'Farrell, Analytic capacity, Hölder conditions, and $ \tau $-spikes, Trans. Amer. Math. Soc. 196 (1974), 415-424. MR 50 #13562. MR 0361116 (50:13562)
  • [14] -, An isolated bounded point derivation, Proc. Amer. Math. Soc. 39 (1973), 559-562. MR 47 #4001. MR 0315452 (47:4001)
  • [15] Walter Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420. MR 0210528 (35:1420)
  • [16] S. O. Sinanjan, Approximation by polynomials and analytic functions in the areal mean, Mat. Sb. 69 (111) (1966), 546-578; English transl., Amer. Math. Soc. Transl. (2) 74 (1968), 91-124. MR 35 #389. MR 0209491 (35:389)
  • [17] J. Wang, An approximate Taylor's theorem for $ R(X)$, Math. Scand. 33 (1973), 343-358. MR 50 #622. MR 0348124 (50:622)
  • [18] -, Modulus of approximate continuity for $ R(X)$, Math. Scand. 34 (1974), 219-225. MR 50 #7556. MR 0355079 (50:7556)
  • [19] J. Wermer, Potential theory, Lecture Notes in Math., vol. 408, Springer-Verlag, New York, 1974. MR 0454033 (56:12284)
  • [20] D. R. Wilken, Bounded point derivations and representing measures on $ R(X)$, Proc. Amer. Math. Soc. 24 (1970), 371-373. MR 40 #1781. MR 0248529 (40:1781)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E99

Retrieve articles in all journals with MSC: 46E99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0470679-X
Keywords: Rational functions, compact set, $ {L^p}$-spaces, bounded point evaluation, representing function, admissible function, full area density, $ {\Gamma _q}$-capacity
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society