Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Examples of nonintegrable analytic Hamiltonian vector fields with no small divisors


Author: R. Cushman
Journal: Trans. Amer. Math. Soc. 238 (1978), 45-55
MSC: Primary 58F05; Secondary 70.58
MathSciNet review: 0478223
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Any analytic symplectic diffeomorphism $ \Phi $ of a symplectic manifold M is the Poincaré map of a real analytic Hamiltonian vector field $ {X_H}$. If $ \Phi $ does not have an analytic integral, then $ {X_H}$ has no analytic integral which is not a power series in H. Let $ M = {{\mathbf{R}}^2}$. If $ \Phi $ has a finite contact homoclinic point, then $ \Phi $ is nonintegrable. Also Moser's polynomial mapping is nonintegrable.


References [Enhancements On Off] (What's this?)

  • [A] V. I. Arnol′d and A. Avez, Ergodic problems of classical mechanics, Translated from the French by A. Avez, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0232910
  • [AM] R. Abraham with J. Marsden, Foundations of mechanics, Benjamin, New York, 1967. MR 36 #3527.
  • [B] Richard B. Barrar, Isolated fixed points in celestial mechanics, J. Math. Anal. Appl. 36 (1971), 506–517. MR 0289862
  • [C] R. Cushman, Analytic integrable area preserving diffeomorphisms of the closed 2-disc, Thesis, Princeton Univ., 1970.
  • [KN] S. Kobayashi and K. Nomizu, Foundations of differential geometry. I, Interscience, New York, 1970.
  • [M1] Jürgen Moser, Nonexistence of integrals for canonical systems of differential equations, Comm. Pure Appl. Math. 8 (1955), 409–436. MR 0079171
  • [M2] Jürgen Moser, Stable and random motions in dynamical systems, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J; Annals of Mathematics Studies, No. 77. MR 0442980
  • [M3] Jürgen K. Moser, Lectures on Hamiltonian systems, Mem. Amer. Math. Soc. No. 81, Amer. Math. Soc., Providence, R.I., 1968. MR 0230498
  • [M4] Jürgen Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math. 9 (1956), 673–692. MR 0086981
  • [S] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 0228014, 10.1090/S0002-9904-1967-11798-1
  • [Si] Carl Ludwig Siegel, On the integrals of canonical systems, Ann. of Math. (2) 42 (1941), 806–822. MR 0005818
  • [SM] Carl Ludwig Siegel and Jürgen K. Moser, Lectures on celestial mechanics, Springer-Verlag, New York-Heidelberg, 1971. Translation by Charles I. Kalme; Die Grundlehren der mathematischen Wissenschaften, Band 187. MR 0502448
  • [Z] E. Zehnder, Homoclinic points near elliptic fixed points, Comm. Pure Appl. Math. 26 (1973), 131–182. MR 0345134

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F05, 70.58

Retrieve articles in all journals with MSC: 58F05, 70.58


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0478223-8
Keywords: Symplectic diffeomorphism, suspension, integrable, Moser's diffeomorphism, homoclinic point
Article copyright: © Copyright 1978 American Mathematical Society