WEAK CHEBYSHEV SUBSPACES AND CONTINUOUS SELECTIONS FOR THE METRIC PROJECTION

BY

GÜNTHER NÜRNBERGER AND MANFRED SOMMER

Abstract. Let G be an n-dimensional subspace of C[a,b]. It is shown that there exists a continuous selection for the metric projection if for each f in C[a,b] there exists exactly one alternation element g, i.e., a best approximation for f such that for some a < x_0 < \cdots < x_n < b,

\[\varepsilon(-1)^i(f - g_i)(x_i) = \|f - g_i\|, \quad i = 0, \ldots, n, \varepsilon = \pm 1. \]

Further it is shown that this condition is fulfilled if and only if G is a weak Chebyshev subspace with the property that each g in G, g \neq 0, has at most n distinct zeros. These results generalize in a certain sense results of Lazar, Morris and Wulbert for n = 1 and Brown for n = 5.

If G is a nonempty subset of a normed linear space E then for each f in E, we define \(P_G(f) := \{ g_0 \in G : \|f - g_0\| = \inf(\|f - g\| : g \in G) \} \). \(P_G \) defines a set-valued mapping of E into \(2^G \) which in the literature is called the metric projection onto G. A continuous mapping \(s \) of E into G is called a continuous selection for the metric projection \(P_G \) (or, more briefly, continuous selection) if \(s(f) \) is in \(P_G(f) \) for each \(f \) in E. In this paper we treat the problem of the existence of continuous selections for n-dimensional subspaces G of C[a,b], with C[a,b] as usual the Banach space of real-valued continuous functions on [a,b] under the uniform norm.

A. Lazar, P. Morris and D. Wulbert [4] have characterized the 1-dimensional subspaces of C(X) with X compact Hausdorff, which admit a continuous selection. They raised the problem of characterizing the corresponding n-dimensional subspaces. The only known result for higher dimensional subspaces has been given by A. Brown [1], who has shown the existence of continuous selections for certain 5-dimensional subspaces of C[-1,1].

To obtain continuous selections, Lazar, Morris and Wulbert [4] and Brown [1] proceeded as follows: For each f in C[a,b] they considered all g in \(P_G(f) \) which can be written as \(g = a_1 g_1 + \cdots + a_n g_n \), where \(g_1, \ldots, g_n \) is a basis
of G, and chose the unique element g in $P_G(f)$ with maximal coefficient a_n. This works in the cases $n = 1$ and $n = 5$.

Using this kind of selection it does not seem possible to get a general theorem for n-dimensional subspaces in $C[a,b]$. With new methods, however, and in the setting of weak Chebyshev subspaces we can give a sufficient condition for the existence of continuous selections.

R. Jones and L. Karlovitz [2, Theorem 4] have shown that an n-dimensional subspace G of $C[a,b]$ is weak Chebyshev if and only if for each f in $C[a,b]$ there exists at least one alternation element g_f (see Definition 1 below) in $P_G(f)$. We show that if for each f in $C[a,b]$ there exists exactly one alternation element g_f in $P_G(f)$, then $s(f) = g_f$ defines a continuous selection (Proposition 2). From Theorem 8 and Theorem 11, which together represent the main result of this paper, it follows that for an n-dimensional weak Chebyshev subspace G each f in $C[a,b]$ has exactly one alternation element in $P_G(f)$ if and only if each $g \in G$, $g \neq 0$, has at most n distinct zeroes. (In particular, g may not vanish on intervals.)

Using this result and Proposition 2, we immediately get an existence theorem for continuous selections for n-dimensional subspaces (Corollary 9). Brown [1] uses essentially stronger conditions to guarantee the existence of continuous selections for 5-dimensional subspaces of $C[-1,1]$. Brown’s result disproves a claim of Lazar, Morris and Wulbert [4], who tried to show that for n-dimensional subspaces G in $C(X)$ (X a connected, compact, Hausdorff space) such that 1 is in G and each $g \in G$, $g \neq 0$, does not vanish on an open set in X, there does not exist a nontrivial continuous selection.

Finally, Let us remark that from P. Schwartz [8] it follows that under the assumption of Corollary 9 the continuous selection is unique.

In the following let G be an n-dimensional subspace of $C[a,b]$.

1. Definition. If f is in $C[a,b]$, then g in $P_G(f)$ is called an alternation element (A-element) of f if there exist $n + 1$ distinct points $a < x_0 < \cdots < x_n < b$ such that

$$\varepsilon (-1)^i(f - g)(x_i) = \|f - g\|, \quad i = 0, \ldots, n, \quad \varepsilon = \pm 1.$$

The points $a < x_0 < \cdots < x_n < b$ are called alternating extreme points of $f - g$.

First, we want to show that when each f has a unique A-element then we can always define a continuous selection.

2. Proposition. Suppose for each f in $C[a,b]$ there exists exactly one A-element g_f in $P_G(f)$. Define $s : C[a,b] \to G$ by $s(f) = g_f$ for each $f \in C[a,b]$. Then, s is a continuous selection for $P_G : C[a,b] \to 2^G$.

Proof. We suppose s is not continuous.
Because of the finite dimensionality of G, there exist $f \in C[a,b]$, $g \in G$ and a sequence $(f_m) \subset C[a,b]$ so that $f_m \to f$, $s(f_m) \to g$, but $g \neq s(f)$.

We will show that g is an A-element of f and this will contradict the uniqueness of the A-element.

By definition, $s(f_m)$ is an A-element of f_m, $m \in N$. Therefore, there are extreme points $a < x_0^{(m)} < x_1^{(m)} < \cdots < x_n^{(m)} < b$ of $f_m - s(f_m)$.

We can assume that

$$(-1)^i (f_m - s(f_m)) (x_i^{(m)}) = \|f_m - s(f_m)\|, \quad i = 0, \ldots, n, \ m \in N.$$

Here it may be necessary to choose a subsequence of (f_m) and perhaps work with $-f$ and $-f_m$ in place of f and f_m. We can also assume (again choosing a subsequence if necessary) that $\lim_{m \to \infty} x_i^{(m)} = x_i$ exists, $i = 0,1,\ldots, n$. Now, since $\lim_{m \to \infty} f_m = f$ and $\lim_{m \to \infty} s(f_m) = g$, we have

$$\|f - g\| = \lim_{m \to \infty} \|f_m - s(f_m)\| = (-1)^i \lim_{m \to \infty} (f_m - s(f_m))(x_i^{(m)}) = (-1)^i (f - g)(x_i)$$

where in the second equality we used (1) and the uniform convergence. This shows that g is an A-element, which is the desired contradiction.

Jones and Karlovitz [2] have characterized those n-dimensional subspaces of $C[a,b]$ which have at least one A-element for each f in $C[a,b]$. For this characterization, we need the following definition:

3. Definition. G is called weak Chebyshev if each g in G has at most $n - 1$ changes of sign, i.e., there do not exist points $a < x_0 < \cdots < x_n < b$ such that $g(x_i) \cdot g(x_{i+1}) < 0$, $i = 0, \ldots, n - 1$.

Jones-Karlovitz [2] have proved the following theorem:

4. Theorem. G is weak Chebyshev if and only if for each f in $C[a,b]$ there exists at least one A-element in $P_G(f)$.

To get a continuous selection under application of Proposition 2, we examine what additional conditions a weak Chebyshev subspace has to fulfill in order that each f in $C[a,b]$ has exactly one A-element.

We need the following standard definition:

5. Definition. A zero x_0 of f in $C[a,b]$ is said to be a simple zero if f changes sign at x_0 or if $x_0 = a$ or $x_0 = b$.

A zero x_0 of f in $C[a,b]$ is said to be a double zero if f does not change sign at x_0 and $x_0 \neq a, x_0 \neq b$.

In the following, we count simple zeroes as one zero and double zeroes as two zeroes. To prove the following results we need the lemma below.

6. Lemma. If f is in $C[a,b]$ and if there exist $n + 1$ points $a < x_0 < \cdots <
\(x_n \leq b \) such that
\[\epsilon (-1)^i f(x_i) > 0, \quad i = 0, \ldots, n, \epsilon = \pm 1, \]
then \(f \) has at least \(n \) zeroes \(y_i \) such that
\[x_0 < y_0 < x_1 < y_1 < \cdots < x_{n-1} < y_{n-1} < x_n. \]

7. Lemma. If \(G \) is an \(n \)-dimensional weak Chebyshev subspace of \(C[a,b] \) such that there exists a \(g \) in \(G \), \(g \neq 0 \), with at least \(n + 2 \) zeroes, then there exists a \(\tilde{g} \) in \(G \), \(\tilde{g} \neq 0 \), with at least \(n + 1 \) distinct zeroes.

Proof. Let \(g \) be in \(G \), \(g \neq 0 \), with at least \(n + 2 \) zeroes in \([a,b]\), but only \(r \), \(r < n \), distinct zeroes. Suppose first that \(g(a) = g(b) = 0 \), and set \(\bar{x} = \max\{x \in [a,b] | g(x) = 0\} \).

Let \(a < x_1 < \cdots < x_s \leq \bar{x} \) be the simple zeroes of \(g \).

(a) \(s + n - 1 \) is an even number.

We choose \(n - 1 - s \) points \(\bar{x} < x_{s+1} < \cdots < x_{n-1} < b \). Since \(G \) is weak Chebyshev, by Jones and Karlovitz [2, p. 140] there exists a \(\tilde{g} \in G \), \(\tilde{g} \neq 0 \), with
\[\epsilon (-1)^i \tilde{g}(x) > 0, \quad x_{i-1} < x < x_i, \quad i = 1, \ldots, n, \epsilon = \pm 1, \]
where \(x_0 = a, x_n = b \). By Lemma 6, \(\tilde{g} \) has at least \(n - 1 \) distinct zeroes. We choose \(\epsilon \) such that \(\text{sgn}(g(x) \cdot \tilde{g}(x)) > 0 \) if \(x \in [a,x_{s+1}] \). Let \(a = y_1 < \cdots < y_s = b \) be the distinct zeroes of \(g \) in \([a,b]\).

Then
\[M := \min_{i=2,\ldots,n} \| g \|_{[y_{i-1},y_i]} > 0. \]

We define \(\hat{g} := M\tilde{g}/(2\|\tilde{g}\|) \).

The function \(\hat{g} \) has at least two further distinct zeroes in \([a,b]\), otherwise the function \(g - \hat{g} \) would have at least \(n \) changes of sign. This would be a contradiction.

(b) \(s + n - 1 \) is an odd number.

We choose \(x_0 = a \) and \(n - s - 2 \) points
\[\bar{x} < x_{s+1} < \cdots < x_{n-2} < b. \]

Since \(G \) has an \((n - 1)\)-dimensional weak Chebyshev subspace (see Sommer and Strauss [11, Theorem 2.6]), by Jones and Karlovitz [2, p. 140] there exists a \(\tilde{g} \in G \), \(\tilde{g} \neq 0 \) with \(\epsilon (-1)^i \tilde{g}(x) > 0, x_{i-1} < x < x_i, \ i = 1, \ldots, n - 1, \epsilon = \pm 1 \) where \(x_{n-1} = b \).

As before let \(\text{sgn}(g(x) \cdot \tilde{g}(x)) > 0 \) if \(x \in [a,x_{s+1}] \).

Following (a) we construct a function \(\hat{g} \).

As before it follows that either the function \(\hat{g} \) or the function \(g - \hat{g} \) has \(n + 1 \) distinct zeroes in \([a,b]\).
If not \(g(a) = g(b) = 0 \), the assertion can be shown in an analogous way. This completes the proof.

8. **Theorem.** If \(G \) is an \(n \)-dimensional weak Chebyshev subspace of \(C[a,b] \) such that each \(g \) in \(G, g \neq 0 \), has at most \(n \) distinct zeroes, then each \(f \) in \(C[a,b] \) has exactly one \(A \)-element \(g \) in \(P_G(f) \).

Proof. *Assumption.* There exists a function \(f \) in \(C[a,b] \) which has two \(A \)-elements \(g_1 \) and \(g_2 \) in \(P_G(f) \).

Let \(a < x_0 < \cdots < x_n < b \) be \(n + 1 \) alternating extreme points of \(f - g_1 \) and let \(a < y_0 < \cdots < y_n < b \) be \(n + 1 \) alternating extreme points of \(f - g_2 \).

We distinguish two cases:

First case.

\[
(-1)^i(f - g_1)(x_i) = \|f - g_1\|, \quad i = 0, \ldots, n,
\]

\[
(-1)^i(f - g_2)(y_i) = \|f - g_2\|, \quad i = 0, \ldots, n.
\]

Then

\[
(-1)^i(g_2 - g_1)(x_i) > 0, \quad i = 0, \ldots, n,
\]

\[
(-1)^i(g_2 - g_1)(y_i) < 0, \quad i = 0, \ldots, n.
\]

We treat only the case

\[
(\text{ii}) \quad x_{i-2} < y_i < x_{i+2}, \quad i = 0, \ldots, n,
\]

where the points \(x_i \) for \(i = -2, -1, n + 1, n + 2 \) are omitted. In the other case, if \(y_i < x_{i-2} \) for some \(i \), we choose the points \(y_0, \ldots, y_i, x_{i-2}, \ldots, x_n \) fulfilling

\[
(-1)^j(g_2 - g_1)(y_j) < 0, \quad j = 0, \ldots, i,
\]

\[
(-1)^j(g_2 - g_1)(x_{j-3}) < 0, \quad j = i + 1, \ldots, n + 3.
\]

By Lemma 6, \(g_2 - g_1 \) has at least \(n + 3 \) zeroes. Applying Lemma 7 we get a contradiction of the hypothesis that elements of \(G \) have at most \(n \) distinct zeroes.

A similar argument works for \(x_{i+2} < y_i \).

Now we prove by induction that \(g_1 - g_2 \) has at least \(n + 1 \) distinct zeroes. This is a contradiction of the hypothesis on \(G \). If \(x_i = y_i, i = 0, \ldots, n \), then

\[
(g_1 - g_2)(x_i) = 0, \quad i = 0, \ldots, n.
\]

We may assume \(x_i < y_i \) for some \(i = 0, \ldots, n \).

We show: \(x_j < y_j, j = 0, \ldots, n \).

If \(y_j < x_j \) for any \(j_0 \in \{0, \ldots, n\} \) we choose

\[
y_0, \ldots, y_{j_0}, x_{j_0}, \ldots, x_i, y_i, \ldots, y_n \quad \text{if} j_0 < i
\]

and
Because of (i) in both cases $g_1 - g_2$ has at least $n + 2$ zeroes by Lemma 6. Applying Lemma 7 we get a contradiction of the hypothesis on G.

Now we show by induction that $g_1 - g_2$ has at least $n + 1$ distinct zeroes in $[x_0, y_n]$: $n = 1$.

If $x_0 < y_0 < x_1 < y_1$ (respectively $x_0 < y_0 = x_1 < y_1$ or $x_0 < x_1 < y_0 < y_1$), then $g_1 - g_2$ has one zero in each interval $[x_0, y_0]$, $[x_1, y_1]$ (respectively $[x_0, y_0)$, $(x_1, y_1]$ or $[x_0, x_1]$, $[y_0, y_1]$).

Let the statement be true for $n - 1$.

If $y_{n-1} < x_n < y_n$, then by assumption $g_1 - g_2$ has n distinct zeroes in $[x_0, y_{n-1}]$ and a further zero in $[x_n, y_n]$.

If $y_{n-1} = x_n < y_n$, then by assumption $g_1 - g_2$ has n distinct zeroes in $[x_0, y_{n-1}]$ and a further zero in (x_n, y_n).

Finally we consider the case $x_n < y_{n-1} < y_n$:

Since $(-1)^n(g_2 - g_1)(y_n) > 0$, $(-1)^n(g_2 - g_1)(y_{n-1}) > 0$, and $y_{n-2} < x_n$ we conclude as in the case $y_{n-1} < x_n < y_n$.

Second case.

\[
(-1)^i(f - g_1)(x_i) = ||f - g_1||, \quad i = 0, \ldots, n.
\]

\[
-(-1)^i(f - g_2)(y_i) = ||f - g_2||, \quad i = 0, \ldots, n.
\]

We treat only the case that $f - g_1$ and $f - g_2$ have exactly $n + 1$ alternating extreme points.

Otherwise we can apply the first case.

Then

\[
(-1)^i(g_2 - g_1)(x_i) > 0, \quad i = 0, \ldots, n,
\]

\[
(-1)^i(g_2 - g_1)(y_i) > 0, \quad i = 0, \ldots, n.
\]

It is now enough to treat the case

\[
(x_{i-1} < y_i < x_{i+1}, \quad i = 0, \ldots, n),
\]

where the points x_{i-1} and x_{i+1} are omitted. Otherwise we can conclude as in the first case. Applying the first case to the points $x_0, \ldots, x_{n-1}, y_1, \ldots, y_n$ because of (v) $g_1 - g_2$ has n distinct zeroes z_1, \ldots, z_n in $[x_0, y_n]$.

We first prove: $z_1, \ldots, z_n \in (a, b)$. If $z_1 = x_0$, then $y_0 < x_0$. Otherwise $f - g_2$ has $n + 2$ alternating extreme points x_0, y_0, \ldots, y_n. This is a contradiction to (iii). Therefore $z_1 > a$.

If $z_n = y_n$, then $x_n > y_n$. Otherwise $f - g_1$ has $n + 2$ alternating extreme points x_0, \ldots, x_n, y_n. This is a contradiction to (iii). Therefore $z_n < b$.

If $g_1 - g_2$ has $n + 1$ distinct zeroes, then we would get a contradiction of the hypothesis on G.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Therefore we know \(g_1 - g_2 \) has no further zero in \([a, b]\). Because of \(a < z_1 < \cdots < z_n < b \) and \(G \) weak Chebyshev \(g_1 - g_2 \) has at most \(n - 1 \) changes of sign under the points \(z_i \). We show \(g_1 - g_2 \) has at most \(n - 2 \) changes of sign:

- If \(g_1 - g_2 \) has \(n - 1 \) changes of sign under the points \(z_i \), then there exists exactly one zero \(z_j \in (a, b) \) such that \(g_1 - g_2 \) does not change sign at \(z_j \).
- Then it holds: If \(z_j > x_0 \), then because of (iv)
 \[
 (-1)^0(g_2 - g_1)(x) > 0 \quad \text{if } a < x < z_1 \\
 (-1)^n(g_2 - g_1)(x) < 0 \quad \text{if } z_n < x < b.
 \]
- If \(z_j = x_0 \), then \(x_0 < x_0 \) and (vi) is also valid.
- Now we get a contradiction to (iv):
 \[
 (1) \ x_n > y_n.
 \]
 Then \(z_n < x_n \) and because of (iv) \((-1)^n(g_2 - g_1)(x_n) > 0 \). This is a contradiction.
 \[
 (2) \ x_n < y_n.
 \]
- If \(z_n < y_n \) we also get a contradiction because of (iv). But if \(z_n = y_n \), then \(x_n > y_n \) is always valid because of (iii).
- We have shown:
 - If \(g_1 - g_2 \) has exactly \(n \) distinct zeroes, then \(g_1 - g_2 \) has at most \(n - 2 \) changes of sign. But in this case there exist \(n + 2 \) zeroes of \(g_1 - g_2 \) because of \(a < z_1, z_n < b \).
 - Applying Lemma 7 we get a contradiction to the assumption.

Schwartz [8] has shown that for an \(n \)-dimensional subspace \(G \) of \(C(X) \) with the property that no \(g \) in \(G \), \(g \neq 0 \), vanishes identically on an open subset of \(X \), the set of functions in \(C(X) \) having unique best approximation in \(G \) is dense in \(C(X) \). Therefore there exists at most one continuous selection. By this result, Proposition 2 and Theorem 8 the next corollary follows immediately.

9. Corollary. If \(G \) is an \(n \)-dimensional weak Chebyshev subspace such that each \(g \) in \(G \), \(g \neq 0 \), has at most \(n \) distinct zeroes, then there exists a unique continuous selection \(s: C[a, b] \to G \) for \(P_G: C[a, b] \to 2^G \).

Now we will give some nontrivial examples of subspaces \(G \) in \(C[a, b] \) fulfilling the assumption of Corollary 9.

10. Examples. (a) \(G: = \langle x, x^2, \ldots, x^n \rangle \subset C[0, 1] \). \(G \) is Chebyshev in \((0, 1)\) and therefore the assumption of Corollary 9 is fulfilled, but \(G \) is not Chebyshev in \([0, 1]\).

(b) For \(n > 2 \) and \(n \) even, we define \(G: = \langle 1, x(1 - x^2), x^2, x^3(1 - x^2), x^4, \ldots, x^{n-1}(1 - x^2), x^n \rangle \subset C[-1, 1] \). The dimension of \(G \) is \(n + 1 \). Each
function \(g \) in \(G \) is a polynomial of degree \(\leq n + 1 \) and has therefore at most \(n + 1 \) zeroes in \([-1, 1]\). Such a function \(g \) can be written as \(g = g_1 - g_2 \) where

\[
g_1(x) = \sum_{i=0}^{n/2} a_{2i} x^{2i} \quad \text{and} \quad g_2(x) = x(1 - x^2) \sum_{i=1}^{n/2} a_{2i-1} x^{2i-2}.
\]

Because of the behaviour of \(g_1(x) \) and \(g_2(x) \) for \(x \to \pm \infty \) it can be shown that \(g_1 - g_2 \) has a zero in \((-\infty, -1] \cup [1, \infty)\). Therefore \(G \) is Chebyshev in \((-1, 1)\).

\(G \) is not Chebyshev in \([-1, 1]\) because there exists a function

\[
g_0(x) = x(1 - x^2) \sum_{i=1}^{n/2} a_{2i-1} x^{2i-2} \quad \text{in} \ G, \ g \neq 0,
\]

having exactly \(n + 1 \) zeroes in \([-1, 1]\).

A similar example has been given by Brown [1] in the case \(n = 5 \).

(c) \(G' = \langle |x|, x^3 \rangle \subset C[-1, 1] \). \(G \) is weak Chebyshev and each \(g \in G, \ g \neq 0, \) has at most 2 distinct zeroes, but \(G \) is not Chebyshev in \([-1, 1) \) or \((-1, 1]\).

Finally we ask how strong the assumption of Theorem 7 is for the uniqueness of \(A \)-elements and we show that this is the weakest condition because the converse of Theorem 7 is true.

11. Theorem. If \(G \) is an \(n \)-dimensional weak Chebyshev subspace of \(C[a, b] \) such that for each \(f \in C[a, b] \) there exists exactly one \(A \)-element in \(P_G(f) \) then each \(g \in G, \ g \neq 0, \) has at most \(n \) distinct zeroes.

Proof. Assumption. There exists a \(\tilde{g}_0 \) in \(G, \ \tilde{g}_0 \neq 0, \) with at least \(n + 1 \) distinct zeroes.

We define: \(g_0 := \tilde{g}_0/\|\tilde{g}_0\| \). Then \(\|g_0\| = 1 \).

Since \(G \) is weak Chebyshev, \(g_0 \) has at most \(n - 1 \) changes of sign. Therefore \(n + 1 \) distinct zeroes \(x_0, \ldots, x_n \) of \(g_0 \) exist such that \(e_i g_0(x) > 0, \ x \in [x_i, x_{i+1}], i = -1, 0, \ldots, n, \ e_i = \pm 1, x_{-1} = a, x_{n+1} = b. \)

We construct a function \(f \) in \(C[a, b] \), having two \(A \)-elements in \(P_G(f) \). We define \(f \) in the following way:

1. \(\varepsilon_{-1}(-1)^i f(x_i) = 1, \ i = 0, \ldots, n, \)
2. \(\|f\| = 1, \)
3. \(0, g_0 \ \text{in} \ P_G(f). \)

Then \(g_0 \) and \(0 \) are \(A \)-elements of \(f \).

Construction of \(f \):
(a) We may assume \(g > 0 \) for \(x \in [a, x_0] \).

We define: \(f(x) = 1 \) if \(x \in [a, x_0], (-1)^i f(x_i) = 1, i = 0, \ldots, n. \)
(b) Definition of f in $[x_0, x_1]$

First case. $g_0(x) > 0$ if $x \in [x_0, x_1]$

Let $\tilde{x} = (x_0 + x_1)/2$ and $f(\tilde{x}) = 0$

Let f be linear in $[x_0, \tilde{x}]

\[
f(x) = g_0(x) - g_0(\tilde{x}) + 2(g_0(\tilde{x}) - 1) \frac{x - \tilde{x}}{x_1 - x_0} \quad \text{if } x \in [\tilde{x}, x_1].\]

Second case. $g_0(x) < 0$ for $x \in [x_0, x_1]$

\[
f(x) = g_0(x) - g_0(\tilde{x}) + (1 + g_0(\tilde{x})) \frac{\tilde{x} - x}{\tilde{x} - x_0} \quad \text{if } x \in [x_0, \tilde{x}],
\]

\[
f(\tilde{x}) = 0.
\]

Let f be linear in $[\tilde{x}, x_1]$

This construction of f is continued in an analogous way for the intervals $[x_1, x_2], \ldots, [x_{n-1}, x_n], [x_n, b]$. Obviously f is continuous in $[a, b]$

We show: $|f(x)| < 1$ if $x \in [x_0, x_1]$

In the first case:

\[
-1 < g_0(x) - g_0(\tilde{x}) + g_0(\tilde{x}) - 1
\]

\[
< g_0(x) - g_0(\tilde{x}) + 2(g_0(\tilde{x}) - 1) \frac{x - \tilde{x}}{x_1 - x_0}
\]

\[
= f(x) < g_0(x) - g_0(\tilde{x}) < g_0(x) < 1 \quad \text{if } x \in [\tilde{x}, x_1].
\]

In the second case:

\[
-1 < g_0(x) < g_0(x) - g_0(\tilde{x})
\]

\[
< g_0(x) - g_0(\tilde{x}) + (1 + g_0(\tilde{x})) \frac{\tilde{x} - x}{\tilde{x} - x_0}
\]

\[
= f(x) < g_0(x) - g_0(\tilde{x}) + (1 + g_0(\tilde{x}))
\]

\[
< g_0(x) + 1 < 1 \quad \text{if } x \in [x_0, \tilde{x}].
\]

Therefore $|f(x)| < 1$ if $x \in [x_0, x_1]$

We can show in an analogous way: $|f(x) - g_0(x)| < 1$ if $x \in [x_0, x_1]$

These estimations hold in each interval because of the construction of f

Therefore $f - 0$ and $f - g_0$ have x_0, \ldots, x_n alternating extreme points.

If 0 and g_0 are not in $P_G(f)$, then there would exist a function g in G such that $\|f - g\| < \|f\|$.

Therefore $f - 0$ and $f - g_0$ have x_0, \ldots, x_n alternating extreme points.

This completes the proof.

Finally we show in Proposition 14 that a large class of weak Chebyshev
subspaces in $C[a, b]$ whose nonzero functions have only finitely many zeroes fulfill the assumption of Corollary 9 and therefore admit a unique continuous selection.

We need the following definition (cf. Singer [10, p. 126]):

12. Definition. A linear subspace G of a normed linear space E is called k-Chebyshev (where k is an integer with $0 < k < \infty$), if for each f in E we have $0 \leq \dim P_G(f) < k$.

Finite-dimensional k-Chebyshev subspaces in $C(X)$ (X compact) are characterized in Singer [10, p. 240]:

13. Theorem. If G is an n-dimensional subspace of $C(X)$ (X compact) and k an integer with $0 < k < n - 1$. Then G is a k-Chebyshev subspace if and only if there do not exist $n - k$ distinct points x_1, \ldots, x_{n-k} in X and $k + 1$ linearly independent functions g_0, g_1, \ldots, g_k in G, such that

$$g_i(x_j) = 0, \quad j = 1, \ldots, n - k, \quad i = 0, 1, \ldots, k.$$

Using the methods in the proof of Lemma 7 and Theorem 13 we can show in a straightforward manner that the following Proposition holds:

14. Proposition. If G is an n-dimensional, weak Chebyshev subspace which is $(n - 1)$-Chebyshev and if each g in G, $g \neq 0$, has only finitely many zeroes, then each g in G, $g \neq 0$, has at most n distinct zeroes.

References

Institut für Angewandte Mathematik der Universität Erlangen-Nürnberg, Erlangen, Federal Republic of Germany