Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weak Chebyshev subspaces and continuous selections for the metric projection


Authors: Günther Nürnberger and Manfred Sommer
Journal: Trans. Amer. Math. Soc. 238 (1978), 129-138
MSC: Primary 41A50; Secondary 41A65
DOI: https://doi.org/10.1090/S0002-9947-1978-0482912-9
MathSciNet review: 482912
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be an n-dimensional subspace of $ C[a,b]$. It is shown that there exists a continuous selection for the metric projection if for each f in $ C[a,b]$ there exists exactly one alternation element $ {g_f}$, i.e., a best approximation for f such that for some $ a \leqslant {x_0} < \cdots < {x_n} \leqslant b$,

$\displaystyle \varepsilon {( - 1)^i}(f - {g_f})({x_i}) = \left\Vert {f - {g_f}} \right\Vert,\quad i = 0, \ldots ,n,\varepsilon = \pm 1.$

Further it is shown that this condition is fulfilled if and only if G is a weak Chebyshev subspace with the property that each g in G, $ g \ne 0$, has at most n distinct zeros. These results generalize in a certain sense results of Lazar, Morris and Wulbert for $ n = 1$ and Brown for $ n = 5$.

References [Enhancements On Off] (What's this?)

  • [1] A. L. Brown, On continuous selections for metric projections in spaces of continuous functions, J. Functional Analysis 8 (1971), 431-449. MR 45 #5725. MR 0296666 (45:5725)
  • [2] R. C. Jones and L. A. Karlovitz, Equioscillation under nonuniqueness in the approximation of continuous functions, J. Approximation Theory 3 (1970), 138-145. MR 41 #8899. MR 0264303 (41:8899)
  • [3] S. Karlin and W. J. Studden, Tchebycheff systems: With applications in analysis and statistics, Interscience, New York, 1966. MR 34 #4757. MR 0204922 (34:4757)
  • [4] A. J. Lazar, D. E. Wulbert and P. D. Morris, Continuous selections for metric projections, J. Functional Analysis 3 (1969), 193-216. MR 39 #3288. MR 0241952 (39:3288)
  • [5] G. Meinardus, Approximation of functions: Theory and numerical methods, Springer-Verlag, New York, 1967. MR 36 #571. MR 0217482 (36:571)
  • [6] G. Nürnberger, Dualität von Schnitten für die metrische Projektion und von Fortsetzungen kompakter Operatoren, Dissertation, Erlangen, 1975.
  • [7] -, Schnitte für die metrische Projektion, J. Approximation Theory (to appear). MR 0470584 (57:10332)
  • [8] P. Schwartz, Almost-Chebyshev subspaces of finite dimension in $ C(Q)$, (preprint).
  • [9] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, Berlin and New York, 1970. MR 42 #4937. MR 0270044 (42:4937)
  • [10] -, The theory of best approximation and functional analysis, CBMS Regional Conf. Ser. in Appl. Math., vol. 13, SIAM, Philadelphia, 1974. MR 51 #10967. MR 0374771 (51:10967)
  • [11] M. Sommer and H. Strauss, Eigenschaften von schwach tschebyscheffschen Räumen, J. Approximation Theory (to appear). MR 0467119 (57:6986)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A50, 41A65

Retrieve articles in all journals with MSC: 41A50, 41A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0482912-9
Keywords: Continuous selection, metric projection, weak Chebyshev spaces, alternation elements
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society