Growth hyperspaces of Peano continua

Author:
D. W. Curtis

Journal:
Trans. Amer. Math. Soc. **238** (1978), 271-283

MSC:
Primary 54B20; Secondary 54F25, 57N20

DOI:
https://doi.org/10.1090/S0002-9947-1978-0482919-1

MathSciNet review:
482919

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For *X* a nondegenerate Peano continuum, let be the hyperspace of all nonempty closed subsets of *X*, topologized with the Hausdorff metric. It is known that is homeomorphic to the Hilbert cube. A nonempty closed subspace of is called a *growth hyperspace* provided it satisfies the following condition: if , and such that and each component of *B* meets *A*, then also . The class of growth hyperspaces includes many previously considered subspaces of . It is shown that if *X* contains no free arcs, and is a nontrivial growth hyperspace, then is a Hilbert cube manifold. A corollary characterizes those growth hyperspaces which are homeomorphic to the Hilbert cube. Analogous results are obtained for growth hyperspaces with respect to the hyperspace of closed convex subsets of a convex *n*-cell *X*.

**[1]**R. H. Bing,*Partitioning a set*, Bull. Amer. Math. Soc.**55**(1949), 1101-1110. MR**0035429 (11:733i)****[2]**T. A. Chapman,*On the structure of Hilbert cube manifolds*, Comp. Math.**24**(1972), 329-353. MR**0305432 (46:4562)****[3]**-,*All Hilbert cube manifolds are triangulable*(preprint).**[4]**-,*Lectures on Hilbert cube manifolds*, CBMS Regional Conf. Ser. in Math., no. 28, Amer. Math. Soc., Providence, R. I., 1976. MR**0423357 (54:11336)****[5]**D. W. Curtis and G. Kozlowski,*Brick decompositions and Q-manifolds*, Proc. Amer. Math. Soc. (to appear). MR**503555 (80d:57009)****[6]**D. W. Curtis and R. M. Schori,*Hyperspaces of polyhedra are Hilbert cubes*(submitted).**[7]**-,*Hyperspaces of Peano continua are Hilbert cubes*(submitted).**[8]**-,*Hyperspaces which characterize simple homotopy type*, General Topology and Appl.**6**(1976), 153-165. MR**0394684 (52:15483)****[9]**Michael Handel,*On certain sums of Hilbert cubes*(preprint). MR**0482774 (58:2827)****[10]**J. L. Kelley,*Hyperspaces of a continuum*, Trans. Amer. Math. Soc.**52**(1942), 22-36. MR**0006505 (3:315b)****[11]**Sam B. Nadler, Jr., J. Quinn and Nick M. Stavrakas,*Hyperspaces of compact convex sets*(preprint).**[12]**R. M. Schori and J. E. West,*The hyperspace of the closed unit interval is a Hilbert cube*, Trans. Amer. Math. Soc.**213**(1975), 217-235. MR**0390993 (52:11815)****[13]**-,*Hyperspaces of graphs are Hilbert cubes*, Pacific J. Math.**53**(1974), 239-251. MR**0367892 (51:4134)****[14]**H. Torunczyk,*Concerning locally homotopy negligible sets and characterization of*-*manifolds*, Fund. Math. (to appear).**[15]**F. A. Valentine,*Convex sets*, McGraw-Hill, New York, 1964. MR**0170264 (30:503)****[16]**J. E. West,*The subcontinua of a dendron form a Hilbert cube factor*, Proc. Amer. Math. Soc.**36**(1972), 603-608. MR**0312449 (47:1006)****[17]**M. Wojdyslawski,*Retractes absolus et hyperespaces des continus*, Fund. Math.**32**(1939), 184-192.**[18]**Raymond Y. T. Wong,*Non-compact Hilbert cube manifolds*(preprint).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54B20,
54F25,
57N20

Retrieve articles in all journals with MSC: 54B20, 54F25, 57N20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1978-0482919-1

Keywords:
Hyperspaces,
hyperspaces of convex subsets,
Peano continuum,
Hilbert cube manifold,
inverse sequence,
near-homeomorphism,
local dendron

Article copyright:
© Copyright 1978
American Mathematical Society