Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Growth hyperspaces of Peano continua


Author: D. W. Curtis
Journal: Trans. Amer. Math. Soc. 238 (1978), 271-283
MSC: Primary 54B20; Secondary 54F25, 57N20
DOI: https://doi.org/10.1090/S0002-9947-1978-0482919-1
MathSciNet review: 482919
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For X a nondegenerate Peano continuum, let $ {2^X}$ be the hyperspace of all nonempty closed subsets of X, topologized with the Hausdorff metric. It is known that $ {2^X}$ is homeomorphic to the Hilbert cube. A nonempty closed subspace $ \mathcal{G}$ of $ {2^X}$ is called a growth hyperspace provided it satisfies the following condition: if $ A \in \mathcal{G}$, and $ B \in {2^X}$ such that $ B \supset A$ and each component of B meets A, then also $ B \in \mathcal{G}$. The class of growth hyperspaces includes many previously considered subspaces of $ {2^X}$. It is shown that if X contains no free arcs, and $ \mathcal{G}$ is a nontrivial growth hyperspace, then $ \mathcal{G}\backslash \{ X\} $ is a Hilbert cube manifold. A corollary characterizes those growth hyperspaces which are homeomorphic to the Hilbert cube. Analogous results are obtained for growth hyperspaces with respect to the hyperspace $ {\text{cc}}(X)$ of closed convex subsets of a convex n-cell X.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), 1101-1110. MR 0035429 (11:733i)
  • [2] T. A. Chapman, On the structure of Hilbert cube manifolds, Comp. Math. 24 (1972), 329-353. MR 0305432 (46:4562)
  • [3] -, All Hilbert cube manifolds are triangulable (preprint).
  • [4] -, Lectures on Hilbert cube manifolds, CBMS Regional Conf. Ser. in Math., no. 28, Amer. Math. Soc., Providence, R. I., 1976. MR 0423357 (54:11336)
  • [5] D. W. Curtis and G. Kozlowski, Brick decompositions and Q-manifolds, Proc. Amer. Math. Soc. (to appear). MR 503555 (80d:57009)
  • [6] D. W. Curtis and R. M. Schori, Hyperspaces of polyhedra are Hilbert cubes (submitted).
  • [7] -, Hyperspaces of Peano continua are Hilbert cubes (submitted).
  • [8] -, Hyperspaces which characterize simple homotopy type, General Topology and Appl. 6 (1976), 153-165. MR 0394684 (52:15483)
  • [9] Michael Handel, On certain sums of Hilbert cubes (preprint). MR 0482774 (58:2827)
  • [10] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36. MR 0006505 (3:315b)
  • [11] Sam B. Nadler, Jr., J. Quinn and Nick M. Stavrakas, Hyperspaces of compact convex sets (preprint).
  • [12] R. M. Schori and J. E. West, The hyperspace of the closed unit interval is a Hilbert cube, Trans. Amer. Math. Soc. 213 (1975), 217-235. MR 0390993 (52:11815)
  • [13] -, Hyperspaces of graphs are Hilbert cubes, Pacific J. Math. 53 (1974), 239-251. MR 0367892 (51:4134)
  • [14] H. Torunczyk, Concerning locally homotopy negligible sets and characterization of $ {l_2}$-manifolds, Fund. Math. (to appear).
  • [15] F. A. Valentine, Convex sets, McGraw-Hill, New York, 1964. MR 0170264 (30:503)
  • [16] J. E. West, The subcontinua of a dendron form a Hilbert cube factor, Proc. Amer. Math. Soc. 36 (1972), 603-608. MR 0312449 (47:1006)
  • [17] M. Wojdyslawski, Retractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), 184-192.
  • [18] Raymond Y. T. Wong, Non-compact Hilbert cube manifolds (preprint).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54B20, 54F25, 57N20

Retrieve articles in all journals with MSC: 54B20, 54F25, 57N20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0482919-1
Keywords: Hyperspaces, hyperspaces of convex subsets, Peano continuum, Hilbert cube manifold, inverse sequence, near-homeomorphism, local dendron
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society