Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hermitian Lie algebras and metaplectic representations. I


Authors: Shlomo Sternberg and Joseph A. Wolf
Journal: Trans. Amer. Math. Soc. 238 (1978), 1-43
MSC: Primary 22E45; Secondary 32M15, 81.22
DOI: https://doi.org/10.1090/S0002-9947-1978-0486325-5
MathSciNet review: 0486325
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A notion of ``hermitian Lie algebra'' is introduced which relates ordinary and graded Lie algebra structures. In the case of real-symplectic and arbitrary-signature-unitary Lie algebras, it leads to an analysis of the minimal dimensional coadjoint orbits, and then to the metaplectic representations and their restrictions to unitary groups of arbitrary signature and parabolic subgroups of these unitary groups.


References [Enhancements On Off] (What's this?)

  • [1] R. L. Anderson, J. Fischer and R. Raczka, Coupling problem for $ U(p,q)$ ladder representations, Proc. Roy. Soc. Ser. A 302 (1968), 491-500. MR 36 #2738. MR 0219659 (36:2738)
  • [2] V. Bargmann, Group representations on Hilbert spaces of analytic functions, Analytic Methods in Mathematical Physics, Gordon and Breach, 1970, pp. 27-63. MR 50 #3787. MR 0351298 (50:3787)
  • [3] Carey and Hannabuss, Preprint.
  • [4] Corwin-Ne'eman-Sternberg, Graded Lie Algebras in mathematics and physics, Rev. Modern Phys. 47 (1975), 573-604. MR 0438925 (55:11828)
  • [5] D. Ž. Djoković and G. Hochschild, Semi-sinplicity of 2-graded Lie algebras. II, Illinois J. Math. 20 (1976), 134-143. MR 0387363 (52:8206)
  • [6] S. Gelbart, Harmonics on Stiefel manifolds and generalized Hankel transforms, Bull. Amer. Math. Soc. 78 (1972), 451-455. MR 0480872 (58:1021)
  • 1. -, Holomorphic discrete series for the real symplectic group, Invent. Math. 19 (1973), 49-58. MR 47 #8770. MR 0320231 (47:8770)
  • [7] K. I. Gross and R. A. Kunze, Bessel functions and representation theory. II, Holomorphic discrete series and metaplectic representations, J. Functional Analysis 25 (1977), 1-49. MR 0453928 (56:12181)
  • [8] Harish-Chandra, Representations of semi-simple Lie grouss. VI, Amer. J. Math. 78 (1956), 564-628. MR 18, 490. MR 0082056 (18:490d)
  • [9] C. Itzykson, Remarks on boson commutation rules, Comm. Math. Phys. 4 (1967), 92-122. MR 35 #2569. MR 0211692 (35:2569)
  • [10] A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. 9 (1976), 1-29. MR 0404366 (53:8168)
  • [11] V. Kac, Lie superalgebras (to appear).
  • [12] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials (preprint). MR 0463359 (57:3311)
  • [13] D. Kazhdan, Some applications of the Weil representation (preprint). MR 0492089 (58:11243)
  • [14] S. Kobayashi, On automorphism groups of homogeneous complex manifolds, Proc. Amer. Math. Soc. 12 (1961), 359-361. MR 24 #A3664. MR 0133839 (24:A3664)
  • [15] -, Irreducibility of certain unitary representations, J. Math. Soc. Japan 20 (1968), 638-642. MR 37 #6968. MR 0231413 (37:6968)
  • [16] G. Mack and I. Todorov, Irreducibility of the ladder representations of $ U(2,2)$ when restricted to the Poincaré subgroup, J. Mathematical Phys. 10 (1969), 2078-2085. MR 40 #3816. MR 0250582 (40:3816)
  • [17] G. W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265-311. MR 20 #4789. MR 0098328 (20:4789)
  • [18] S. Murakami, On automorphisms of Siegel domains, Lecture Notes in Math., vol. 286, Springer-Verlag, Berlin and New York, 1972. MR 51 #944. MR 0364690 (51:944)
  • [19] H. Ozeki and M. Wakimoto, On polarizations of certain homogeneous spaces, Hiroshima Math. J. 2 (1972), 445-482. MR 49 #5236a. MR 0340483 (49:5236a)
  • [20] I.I. Pjateckiĭ-Šapiro, Automorphic functions and the geometry of classical domains, Fizmatgiz, Moscow, 1961; English transl., Gordon and Breach, New York, 1969. MR 25 #231; 40 #5908. MR 0252690 (40:5908)
  • [21] L. Pukánszky, On the unitary representations of exponential groups, J. Functional Analysis 2 (1968), 73-113. MR 37 #4205. MR 0228625 (37:4205)
  • [22] -, On the theory of exponential groups, Trans. Amer. Math. Soc. 126 (1967), 487-507. MR 35 #301. MR 0209403 (35:301)
  • [23] J. H. Rawnsley, On the cohomology groups of a polarization and diagonal quantization (preprint).
  • [24] -, Representations of a semi-direct product by quantization, Math. Proc. Cambridge Philos. Soc. 78 (1975), 345-350. MR 0387499 (52:8341)
  • [25] H. Rossi and M. Vergne, Analytic continuation of the holomorphic discrete series of a semi-simple Lie group, Acta Math. 136 (1976), 1-59. MR 0480883 (58:1032)
  • [26] -, Continuation analytique de la série discrete holomorphic, Noncommutative Harmonic Analysis, Lecture Notes in Math., vol. 466, Springer-Verlag, Berlin and New York, 1975.
  • [27] L. P. Rothschild and J. A. Wolf, Representations of semisimple groups associated to nilpotent orbits, Ann. Sci. École Norm. Sup. (4) 7 (1974), 155-174. MR 50 #10158. MR 0357690 (50:10158)
  • [28] W. Schmidt, Some properties of square-integrable representations of semi-simple Lie groups, Ann. of Math.(2) 102 (1975), 535-564. MR 0579165 (58:28303)
  • [29] D. Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149-167. MR 25 #956. MR 0137504 (25:956)
  • [30] M. Takeuchi, Homogeneous Siegel domains, Publ. Study Group of Geometry, 7, Tokyo, 1973. MR 0407332 (53:11108)
  • [31] J. A. Tirao, Square integrable representations of semisimple Lie groups, Trans. Amer. Math. Soc. 190 (1974), 57-75. MR 49 #3036. MR 0338270 (49:3036)
  • [32] I. T. Todorov, Discrete series of hermitian representations of the Lie algebra of $ U(p,q)$, Lecture Notes, ICTP, Trieste, 1975.
  • [33] M. Vergne, Étudie de certains représentations induites d'un groupe de Lie résoluble exponentiel, Ann. Sci. Ecole Norm. Sup. (4) 3 (1970), 353-384. MR 43 #4966. MR 0279243 (43:4966)
  • [34] N. Wallach, Analytic continuation of the discrete series. I, Trans. Amer. Math. Soc. (to appear). MR 531967 (81a:22009)
  • [35] -, Analytic continuation of the discrete series. II, Trans. Amer. Math. Soc. (to appear).
  • [36] -, On the unitarizability of representations with highest weights, Noncommutative Harmonic Analysis, Lecture Notes in Math., vol. 466, Springer-Verlag, Berlin and New York, 1975. MR 0435299 (55:8259)
  • [37] A. Weil, Sur certains groupes d'operateurs unitaires, Acta Math. 111 (1964), 143-211. MR 29 #2324. MR 0165033 (29:2324)
  • [38] J. A. Wolf, Unitary representations of maximal parabolic subgroups of the classical groups, Mem. Amer. Math. Soc. No. 180 (1976). MR 0444847 (56:3194)
  • [39] -, Representations of certain semi-direct product groups, J. Functional Analysis 19 (1975), 339-372. MR 0422519 (54:10506)
  • [40] -, Unitary representations of partially holomorphic cohomology spaces, Mem. Amer. Math. Soc. No. 138 (1974).
  • [41] -, Remark on nilpotent orbits, Proc. Amer. Math. Soc. 51 (1975), 213-216. MR 0422520 (54:10507)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45, 32M15, 81.22

Retrieve articles in all journals with MSC: 22E45, 32M15, 81.22


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0486325-5
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society