Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The commutant of an analytic Toeplitz operator


Author: Carl C. Cowen
Journal: Trans. Amer. Math. Soc. 239 (1978), 1-31
MSC: Primary 47B35; Secondary 30A78
DOI: https://doi.org/10.1090/S0002-9947-1978-0482347-9
MathSciNet review: 0482347
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a function f in $ {H^\infty }$ of the unit disk, the operator on $ {H^2}$ of multiplication by f will be denoted by $ {T_f}$ and its commutant by $ \{ {T_f}\} '$. For a finite Blaschke product B, a representation of an operator in $ {\{ {T_B}\}'}$ as a function on the Riemann surface of $ {B^{ - 1}} \circ B$ motivates work on more general functions. A theorem is proved which gives conditions on a family $ \mathcal{F}$ of $ {H^\infty }$ functions which imply that there is a function h such that $ \{ {T_h}\} ' = { \cap _{f \in \mathcal{F}}}\{ {T_f}\} '$. As a special case of this theorem, we find that if the inner factor of $ f - f(c)$ is a finite Blaschke product for some c in the disk, then there is a finite Blaschke product B with $ \{ {T_f}\} ' = \{ {T_B}\} '$. Necessary and sufficient conditions are given for an operator to commute with $ {T_f}$ when f is a covering map (in the sense of Riemann surfaces). If f and g are in $ {H^\infty }$ and $ f = h \circ g$, then $ \{ {T_f}\} ' \supset \{ {T_g}\} '$. This paper introduces a class of functions, the $ {H^2}$-ancestral functions, for which the converse is true. If f and g are $ {H^2}$-ancestral functions, then $ \{ {T_f}\} ' \ne \{ {T_g}\} '$ unless $ f = h \circ g$ where h is univalent. It is shown that inner functions and covering maps are $ {H^2}$-ancestral functions, although these do not exhaust the class. Two theorems are proved, each giving conditions on a function f which imply that $ {T_f}$ does not commute with nonzero compact operators. It follows from one of these results that if f is an $ {H^2}$-ancestral function, then $ {T_f}$ does not commute with any nonzero compact operators.


References [Enhancements On Off] (What's this?)

  • [1] M. B. Abrahamse, Analytic Toeplitz operators with automorphic symbol, Proc. Amer. Math. Soc. 52 (1975), 297-302. MR 53 #8951. MR 0405156 (53:8951)
  • [2] M. B. Abrahamse and J. A. Ball, Analytic Toeplitz operators with automorphic symbol. II, Proc. Amer. Math. Soc. 59 (1976), 323-328. MR 0454714 (56:12962)
  • [3] I. N. Baker, J. A. Deddens and J. L. Ullman, A theorem on entire functions with applications to Toeplitz operators, Duke Math. J. 41 (1974), 739-745. MR 50 #7523. MR 0355046 (50:7523)
  • [4] J. A. Deddens and T. K. Wong, The commutant of analytic Toeplitz operators, Trans. Amer. Math. Soc. 184 (1973), 261-273. MR 48 #2819. MR 0324467 (48:2819)
  • [5] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 24 #A2844. MR 0133008 (24:A2844)
  • [6] E. A. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442-449. MR 36 #6961. MR 0223914 (36:6961)
  • [7] C. Pearcy and A. L. Shields, A survey of the Lomonosov technique in the theory of invariant subspaces, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 219-229. MR 50 #8113. MR 0355639 (50:8113)
  • [8] W. Rudin, A generalization of a theorem of Frostman, Math. Scand. 21 (1967), 136-143 (1968). MR 38 #3463. MR 0235151 (38:3463)
  • [9] J. V. Ryff, Subordinate $ {H^p}$ functions, Duke Math. J. 33 (1966), 347-354. MR 33 #289. MR 0192062 (33:289)
  • [10] H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513-532. MR 24 #A3280. MR 0133446 (24:A3280)
  • [11] A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1970/71), 777-788. MR 44 #4558. MR 0287352 (44:4558)
  • [12] J. E. Thomson, Intersections of commutants of analytic Toeplitz operators, Proc. Amer. Math. Soc. 52 (1975), 305-310. MR 53 #3765. MR 0399927 (53:3765)
  • [13] -, The commutants of certain analytic Toeplitz operators, Proc. Amer. Math. Soc. 54 (1976), 165-169. MR 52 #8993. MR 0388156 (52:8993)
  • [14] -, The commutant of a class of analytic Toeplitz operators, Amer. J. Math. 99 (1977), 522-529. MR 0461196 (57:1181)
  • [15] -, The commutant of a class of analytic Toeplitz operators. II, Indiana Univ. Math. J. 25 (1976), 793-800. MR 0417843 (54:5891)
  • [16] W. A. Veech, A second course in complex analysis, Benjamin, New York, 1967. MR 36 #3955. MR 0220903 (36:3955)
  • [17] E. L. Stout, Bounded holomorphic functions on finite Riemann surfaces, Trans. Amer. Math. Soc. 120 (1965), 255-285. MR 32 #1358. MR 0183882 (32:1358)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B35, 30A78

Retrieve articles in all journals with MSC: 47B35, 30A78


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0482347-9
Keywords: Toeplitz operator, commutant, $ {H^\infty },{H^2}$, analytic function, inner function, universal covering map
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society