Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Tensor products for $ {\rm SL}(2,\,k)$


Author: Robert P. Martin
Journal: Trans. Amer. Math. Soc. 239 (1978), 197-211
MSC: Primary 22E45; Secondary 22E50
DOI: https://doi.org/10.1090/S0002-9947-1978-0487045-3
MathSciNet review: 487045
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be $ {\text{SL}}(2,k)$ where k is a locally compact, nondiscrete, totally disconnected topological field whose residual characteristic is not 2, $ {\pi _\sigma }$, be a principal series representation of G, and $ \pi \in \hat G$ be arbitrary. We determine the decomposition of $ {\pi _\sigma } \otimes \pi $ into irreducibles by reducing this problem to decomposing the restriction of each $ T \in \hat G$ to a minimal parabolic subgroup B of G and decomposing certain tensor products of irreducibles of B.


References [Enhancements On Off] (What's this?)

  • [1] N. Anh, Restriction of the principal series of $ {\text{SL}}(n,{\mathbf{C}})$ to some reductive subgroups, Pacific J. Math. 38 (1971), 295-313. MR 0327980 (48:6322)
  • [2] I. M. Gel'fand, M. I. Graev and I. Pyatetskiĭ-Shapiro, Representation theory and automorphism functions, Izdat. ``Nauka", Moscow, 1966; English transl., Saunders, Philadelphia, Pa., 1969. MR 36 #3725. MR 38 #2093. MR 0233772 (38:2093)
  • [3] G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101-139. MR 13, 434. MR 0044536 (13:434a)
  • [4] -, Induced representations of locally compact groups. II, Ann. of Math. (2) 58 (1953), 193-221. MR 51, 101. MR 0056611 (15:101a)
  • [5] R. P. Martin, On the decomposition of tensor products of principal series representations for real-rank one semisimple groups, Trans. Amer. Math. Soc. 201 (1975), 177-211. MR 51 #10541. MR 0374341 (51:10541)
  • [6] L. Pukánszky, On the Kronecker products of irreducible representations of the $ 2 \times 2$ real unimodular group. I, Trans. Amer. Math. Soc. 100 (1961), 116-152. MR 30 #3177. MR 0172962 (30:3177)
  • [7] J. Repka, Tensor products of unitary representations of $ {\text{SL}_2}({\mathbf{R}})$, Bull. Amer. Math. Soc. 82 (1976), 930-932. MR 0425026 (54:12984)
  • [8] P. J. Sally, Jr. and J. A. Shalika, The Plancherel formula for $ {\text{SL}}(2)$ over a local field, Proc. Nat. Acad. Sci. U.S.A. 63 (1969), 661-667. MR 51 #813. MR 0364559 (51:813)
  • [9] J. A. Shalika, Representations of the two by two unimodular group over local fields. I, II, Seminar on representations of Lie groups, Institute for Advanced Study, Princeton, N. J., 1966.
  • [10] S. Tanaka, On irreducible unitary representations of some special linear groups of the second order. I, Osaka J. Math. 3 (1966), 217-227. MR 36 #6541. MR 0223493 (36:6541)
  • [11] F. Williams, Tensor products of principal series representations, Lecture Notes in Math., vol. 358, Springer-Verlag, Berlin and New York, 1973. MR 50 #2396. MR 0349903 (50:2396)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45, 22E50

Retrieve articles in all journals with MSC: 22E45, 22E50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0487045-3
Keywords: Local field, tensor product, irreducible unitary representation, principal series, supplementary series, discrete series, the special representation, Plancherel measure, minimal parabolic subgroup, induced (restricted) representation
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society