Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Variations, characteristic classes, and the obstruction to mapping smooth to continuous cohomology


Author: Mark A. Mostow
Journal: Trans. Amer. Math. Soc. 240 (1978), 163-182
MSC: Primary 57F30; Secondary 57D30
DOI: https://doi.org/10.1090/S0002-9947-1978-0474357-2
MathSciNet review: 0474357
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a recent paper, the author gave an example of a singular foliation on $ {{\mathbf{R}}^2}$ for which it is impossible to map the de Rham cohomology $ {T_{{\text{DR}}}}$ to the continuous singular cohomology $ {T_{\text{c}}}$ (in the sense of Bott and Haefliger's continuous cohomology of spaces with two topologies) compatibly with evaluation of cohomology classes on homology classes. In this paper the obstruction to mapping $ {T_{{\text{DR}}}}$ to $ {T_{\text{c}}}$ is pinpointed by defining a whole family of cohomology theories $ {T_{k,m,n}}$, based on cochains which vary in a $ {C^k}$ manner, which mediate between the two. It is shown that the obstruction vanishes on nonsingularly foliated manifolds. The cohomology theories are extended to Haefliger's classifying space $ (B{\Gamma _q} \to B{J_q})$, with its germ and jet topologies, by using a notion of differentiable space similar to those of J. W. Smith and K. T. Chen. The author proposes that certain of the $ {T_{kmn}}$ be used instead of $ {T_{\text{c}}}$ to study Bott and Haefliger's conjecture that the continuous cohomology of $ (B{\Gamma _q} \to B{J_q})$ equals the relative Gel'fand-Fuks cohomology $ {H^\ast}({\mathfrak{a}_q},{O_q})$. It is shown that $ {T_{kmn}}(B{\Gamma _q} \to B{J_q})$ may contain new characteristic classes for foliations which vary only in a $ {C^k}$ manner when a foliation is varied smoothly.


References [Enhancements On Off] (What's this?)

  • 1. R. Bott, Lectures on characteristic classes and foliations, Lecture Notes in Math., vol. 279, Springer-Verlag, Berlin and New York, 1972, pp. 1-94. MR 0362335 (50:14777)
  • [1] -, Some remarks on continuous cohomology, Proc. Internat. Conf. on Manifolds and Related Topics in Topology, Tokyo, 1973, pp. 161-170. MR 51 #4269. MR 0368027 (51:4269)
  • [2] R. Bott, H. Shulman and J. Stasheff, De Rham theory for classifying spaces, Advances in Math. 20 (1976), 43-56. MR 0402769 (53:6583)
  • [3] G. E. Bredon, Sheaf theory, McGraw-Hill, New York, 1967. MR 36 #4552. MR 0221500 (36:4552)
  • [4] J.-P. Buffet and J.-C. Lor, Une construction d'un universel pour une classe assez large de $ \Gamma $-structures, C. R. Acad. Sci. Paris Sér. A 270 (1970), A640-A642. MR 42 #6823. MR 0271942 (42:6823)
  • [5] K. T. Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math. (2) 97 (1973), 217-246. MR 52 #1756. MR 0380859 (52:1756)
  • [5'] J. L. Dupont, Simplicial de Rham cohomology and characteristic classes of flat bundles, Aarhus Universitet Preprint series, 1974-75, No. 29; also Topology 15 (1976), 233-245. MR 0413122 (54:1243)
  • [6] S. Eilenberg, Singular homology in differentiable manifolds, Ann. of Math. (2) 48 (1947), 670-681. MR 9,52. MR 0021314 (9:52c)
  • [7] M. Greenberg, Lectures on algebraic topology, Benjamin, New York and Amsterdam, 1967. MR 35 #6137. MR 0215295 (35:6137)
  • [8] A. Haefliger, Homotopy and integrability, Manifolds-Amsterdam 1970, Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1971, pp. 133-163. MR 44 #2251. MR 0285027 (44:2251)
  • [8'] J. L. Heitsch, Deformations of secondary characteristic classes, Topology 12 (1973), 381-388. MR 47 #9639. MR 0321106 (47:9639)
  • [9] S.-T. Hu, On singular homology in differentiable spaces, Ann. of Math. (2) 50 (1949), 266-269. MR 10, 728. MR 0030198 (10:728b)
  • [9'] F. Kamber and P. Tondeur, Characteristic invariants of foliated bundles, Manuscripta Math. 11 (1974), 51-89. MR 48 #12556. MR 0334237 (48:12556)
  • [10] J. Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430-436. MR 17, 1120. MR 0077932 (17:1120a)
  • [10'] G. D. Mostow, Cohomology of topological groups and solvmanifolds, Ann. of Math. (2) 73 (1961), 20-48. MR 23 #A2484. MR 0125179 (23:A2484)
  • [11] M. A. Mostow, Continuous cohomology of spaces with two topologies, Mem. Amer. Math. Soc. No. 175, 1976. MR 54 # 1253. MR 0413132 (54:1253)
  • [12] -, Differential geometry on Milnor classifying spaces and geometric realizations, J. Differential Geometry (to appear).
  • [13] G. B. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. No. 34 (1968), 105-112. MR 38 #718. MR 0232393 (38:718)
  • [13'] H. Shulman, The double complex of $ {\Gamma _k}$, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R. I., 1975, pp. 313-314. MR 51 #11504. MR 0375308 (51:11504)
  • [13"] H. Shulman and J. Stasheff, De Rham theory for $ B\Gamma $, Proc. Conf. on Foliations, Rio de Janeiro, January 1976.
  • [14] J. Wolfgang Smith, The de Rham theorem for general spaces, Tôhoku Math. J. (2) 18 (1966), 115-137. MR 34 #2027. MR 0202154 (34:2027)
  • [15] T. torn Dieck, On the homotopy type of classifying spaces, Manuscripta Math. 11 (1974), 41-49. MR 50 #3222. MR 0350730 (50:3222)
  • [16] I. Vaisman, Cohomology and differential forms, Dekker, New York, 1973. MR 49 #6095. MR 0341344 (49:6095)
  • [16'] W. T. van Est, Group cohomology and Lie algebra cohomology in Lie groups, I, II, Nederl. Akad. Wetensch. Proc. Ser. A 56 = Indag. Math. 15 (1953), 484-504. MR 15, 505. MR 0059285 (15:505b)
  • [17] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman, Glenview, Ill., 1971. MR 45 #4312. MR 0295244 (45:4312)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57F30, 57D30

Retrieve articles in all journals with MSC: 57F30, 57D30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0474357-2
Keywords: Bott-Haefliger continuous cohomology, space with two topologies, smooth cohomology, foliation, Haefliger classifying space, differentiable space, de Rham theorem, integration of forms, variation of simplices, category of morphisms, geometric realization, simplicial space, Milnor classifying space, variation of characteristic classes, characteristic classes of foliations
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society