Variations, characteristic classes, and the obstruction to mapping smooth to continuous cohomology
Author:
Mark A. Mostow
Journal:
Trans. Amer. Math. Soc. 240 (1978), 163182
MSC:
Primary 57F30; Secondary 57D30
MathSciNet review:
0474357
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In a recent paper, the author gave an example of a singular foliation on for which it is impossible to map the de Rham cohomology to the continuous singular cohomology (in the sense of Bott and Haefliger's continuous cohomology of spaces with two topologies) compatibly with evaluation of cohomology classes on homology classes. In this paper the obstruction to mapping to is pinpointed by defining a whole family of cohomology theories , based on cochains which vary in a manner, which mediate between the two. It is shown that the obstruction vanishes on nonsingularly foliated manifolds. The cohomology theories are extended to Haefliger's classifying space , with its germ and jet topologies, by using a notion of differentiable space similar to those of J. W. Smith and K. T. Chen. The author proposes that certain of the be used instead of to study Bott and Haefliger's conjecture that the continuous cohomology of equals the relative Gel'fandFuks cohomology . It is shown that may contain new characteristic classes for foliations which vary only in a manner when a foliation is varied smoothly.
 1.
Raoul
Bott, Lectures on characteristic classes and foliations,
Lectures on algebraic and differential topology (Second Latin American
School in Math., Mexico City, 1971) Springer, Berlin, 1972,
pp. 1–94. Lecture Notes in Math., Vol. 279. Notes by Lawrence
Conlon, with two appendices by J. Stasheff. MR 0362335
(50 #14777)
 [1]
Raoul
Bott, Some remarks on continuous cohomology,
Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ.
Tokyo Press, Tokyo, 1975, pp. 161–170. MR 0368027
(51 #4269)
 [2]
R.
Bott, H.
Shulman, and J.
Stasheff, On the de Rham theory of certain classifying spaces,
Advances in Math. 20 (1976), no. 1, 43–56. MR 0402769
(53 #6583)
 [3]
Glen
E. Bredon, Sheaf theory, McGrawHill Book Co., New
YorkToronto, Ont.London, 1967. MR 0221500
(36 #4552)
 [4]
JeanPhilippe
Buffet and JeanClaude
Lor, Une construction d’un universal pour une classe assez
large de Γstructures, C. R. Acad. Sci. Paris Sér. AB
270 (1970), A640–A642 (French). MR 0271942
(42 #6823)
 [5]
Kuotsai
Chen, Iterated integrals of differential forms and loop space
homology, Ann. of Math. (2) 97 (1973), 217–246.
MR
0380859 (52 #1756)
 [5']
Johan
L. Dupont, Simplicial de Rham cohomology and characteristic classes
of flat bundles, Topology 15 (1976), no. 3,
233–245. MR 0413122
(54 #1243)
 [6]
Samuel
Eilenberg, Singular homology in differentiable manifolds, Ann.
of Math. (2) 48 (1947), 670–681. MR 0021314
(9,52c)
 [7]
Marvin
J. Greenberg, Lectures on algebraic topology, W. A. Benjamin,
Inc., New YorkAmsterdam, 1967. MR 0215295
(35 #6137)
 [8]
André
Haefliger, Homotopy and integrability,
Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes
in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 133–163.
MR
0285027 (44 #2251)
 [8']
James
L. Heitsch, Deformations of secondary characteristic classes,
Topology 12 (1973), 381–388. MR 0321106
(47 #9639)
 [9]
Szetsen
Hu, On singular homology in differentiable spaces, Ann. of
Math. (2) 50 (1949), 266–269. MR 0030198
(10,728b)
 [9']
Franz
W. Kamber and Philippe
Tondeur, Characteristic invariants of foliated bundles,
Manuscripta Math. 11 (1974), 51–89. MR 0334237
(48 #12556)
 [10]
John
Milnor, Construction of universal bundles. II, Ann. of Math.
(2) 63 (1956), 430–436. MR 0077932
(17,1120a)
 [10']
G.
D. Mostow, Cohomology of topological groups and solvmanifolds,
Ann. of Math. (2) 73 (1961), 20–48. MR 0125179
(23 #A2484)
 [11]
Mark
Alan Mostow, Continuous cohomology of spaces with two
topologies, Mem. Amer. Math. Soc. 7 (1976),
no. 175, x+142. MR 0413132
(54 #1253)
 [12]
, Differential geometry on Milnor classifying spaces and geometric realizations, J. Differential Geometry (to appear).
 [13]
Graeme
Segal, Classifying spaces and spectral sequences, Inst. Hautes
Études Sci. Publ. Math. 34 (1968), 105–112.
MR
0232393 (38 #718)
 [13']
Herbert
Shulman, The double complex of Γ_{𝑘},
Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford
Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975,
pp. 313–314. MR 0375308
(51 #11504)
 [13"]
H. Shulman and J. Stasheff, De Rham theory for , Proc. Conf. on Foliations, Rio de Janeiro, January 1976.
 [14]
J.
Wolfgang Smith, The de Rham theorem for general spaces,
Tôhoku Math. J. (2) 18 (1966), 115–137. MR 0202154
(34 #2027)
 [15]
Tammo
tom Dieck, On the homotopy type of classifying spaces,
Manuscripta Math. 11 (1974), 41–49. MR 0350730
(50 #3222)
 [16]
Izu
Vaisman, Cohomology and differential forms, Marcel Dekker,
Inc., New York, 1973. Translation editor: Samuel I. Goldberg; Pure and
Applied Mathematics, 21. MR 0341344
(49 #6095)
 [16']
W.
T. van Est, Group cohomology and Lie algebra cohomology in Lie
groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes
Math. 15 (1953), 484–492, 493–504. MR 0059285
(15,505b)
 [17]
Frank
W. Warner, Foundations of differentiable manifolds and Lie
groups, Scott, Foresman and Co., Glenview, Ill.London, 1971. MR 0295244
(45 #4312)
 1.
 R. Bott, Lectures on characteristic classes and foliations, Lecture Notes in Math., vol. 279, SpringerVerlag, Berlin and New York, 1972, pp. 194. MR 0362335 (50:14777)
 [1]
 , Some remarks on continuous cohomology, Proc. Internat. Conf. on Manifolds and Related Topics in Topology, Tokyo, 1973, pp. 161170. MR 51 #4269. MR 0368027 (51:4269)
 [2]
 R. Bott, H. Shulman and J. Stasheff, De Rham theory for classifying spaces, Advances in Math. 20 (1976), 4356. MR 0402769 (53:6583)
 [3]
 G. E. Bredon, Sheaf theory, McGrawHill, New York, 1967. MR 36 #4552. MR 0221500 (36:4552)
 [4]
 J.P. Buffet and J.C. Lor, Une construction d'un universel pour une classe assez large de structures, C. R. Acad. Sci. Paris Sér. A 270 (1970), A640A642. MR 42 #6823. MR 0271942 (42:6823)
 [5]
 K. T. Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math. (2) 97 (1973), 217246. MR 52 #1756. MR 0380859 (52:1756)
 [5']
 J. L. Dupont, Simplicial de Rham cohomology and characteristic classes of flat bundles, Aarhus Universitet Preprint series, 197475, No. 29; also Topology 15 (1976), 233245. MR 0413122 (54:1243)
 [6]
 S. Eilenberg, Singular homology in differentiable manifolds, Ann. of Math. (2) 48 (1947), 670681. MR 9,52. MR 0021314 (9:52c)
 [7]
 M. Greenberg, Lectures on algebraic topology, Benjamin, New York and Amsterdam, 1967. MR 35 #6137. MR 0215295 (35:6137)
 [8]
 A. Haefliger, Homotopy and integrability, ManifoldsAmsterdam 1970, Lecture Notes in Math., vol. 197, SpringerVerlag, Berlin and New York, 1971, pp. 133163. MR 44 #2251. MR 0285027 (44:2251)
 [8']
 J. L. Heitsch, Deformations of secondary characteristic classes, Topology 12 (1973), 381388. MR 47 #9639. MR 0321106 (47:9639)
 [9]
 S.T. Hu, On singular homology in differentiable spaces, Ann. of Math. (2) 50 (1949), 266269. MR 10, 728. MR 0030198 (10:728b)
 [9']
 F. Kamber and P. Tondeur, Characteristic invariants of foliated bundles, Manuscripta Math. 11 (1974), 5189. MR 48 #12556. MR 0334237 (48:12556)
 [10]
 J. Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430436. MR 17, 1120. MR 0077932 (17:1120a)
 [10']
 G. D. Mostow, Cohomology of topological groups and solvmanifolds, Ann. of Math. (2) 73 (1961), 2048. MR 23 #A2484. MR 0125179 (23:A2484)
 [11]
 M. A. Mostow, Continuous cohomology of spaces with two topologies, Mem. Amer. Math. Soc. No. 175, 1976. MR 54 # 1253. MR 0413132 (54:1253)
 [12]
 , Differential geometry on Milnor classifying spaces and geometric realizations, J. Differential Geometry (to appear).
 [13]
 G. B. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. No. 34 (1968), 105112. MR 38 #718. MR 0232393 (38:718)
 [13']
 H. Shulman, The double complex of , Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R. I., 1975, pp. 313314. MR 51 #11504. MR 0375308 (51:11504)
 [13"]
 H. Shulman and J. Stasheff, De Rham theory for , Proc. Conf. on Foliations, Rio de Janeiro, January 1976.
 [14]
 J. Wolfgang Smith, The de Rham theorem for general spaces, Tôhoku Math. J. (2) 18 (1966), 115137. MR 34 #2027. MR 0202154 (34:2027)
 [15]
 T. torn Dieck, On the homotopy type of classifying spaces, Manuscripta Math. 11 (1974), 4149. MR 50 #3222. MR 0350730 (50:3222)
 [16]
 I. Vaisman, Cohomology and differential forms, Dekker, New York, 1973. MR 49 #6095. MR 0341344 (49:6095)
 [16']
 W. T. van Est, Group cohomology and Lie algebra cohomology in Lie groups, I, II, Nederl. Akad. Wetensch. Proc. Ser. A 56 = Indag. Math. 15 (1953), 484504. MR 15, 505. MR 0059285 (15:505b)
 [17]
 F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman, Glenview, Ill., 1971. MR 45 #4312. MR 0295244 (45:4312)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
57F30,
57D30
Retrieve articles in all journals
with MSC:
57F30,
57D30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197804743572
PII:
S 00029947(1978)04743572
Keywords:
BottHaefliger continuous cohomology,
space with two topologies,
smooth cohomology,
foliation,
Haefliger classifying space,
differentiable space,
de Rham theorem,
integration of forms,
variation of simplices,
category of morphisms,
geometric realization,
simplicial space,
Milnor classifying space,
variation of characteristic classes,
characteristic classes of foliations
Article copyright:
© Copyright 1978
American Mathematical Society
