CLASSIFYING OPEN PRINCIPAL FIBRATIONS

BY

DAVID A. EDWARDS AND HAROLD M. HASTINGS

ABSTRACT. Let G be a compact metric group. We shall construct classifying spaces for open principal G-fibrations over compact metric spaces.

1. Introduction. Let G be a compact metric group. J. Milnor [11] gave the first functorial construction of a universal G-bundle (classifying space) \(EG \to BG \). R. Milgram [10] gave a later construction with better properties, some of which were developed by N. E. Steenrod [16]. If G is a Lie group, every principal fibration with completely regular total space and with fibre G is a fibre-bundle (A. Gleason [4]) (hence also open), so that BG classifies certain (open) principal G-fibrations. We shall extend this result to arbitrary compact metric groups G and compact metric spaces X. J. Cohen [1] extensively studied open principal fibrations, and proved, in particular, that every open principal fibration is an inverse limit of fibre-bundles (see §2). We shall use Cohen's result and some properties of Milgram's resolution (§4) to construct a universal open principal G-fibration

\[\hat{\xi}_G: G \to \hat{E}G \to \hat{B}G. \]

(1.1)

We describe \(\hat{\xi}_G \) in §2. In §§5–6 we describe a natural isomorphism

\[\alpha: [X, \hat{B}G] \cong k_G(X), \]

(1.2)

where \(k_G(X) \) denotes the class of isomorphism classes of open principal G-fibrations over the compact metric space X.

1.3) REMARKS. (a) J. P. May [9, see especially §§4–6] classified principal fibrations up to weak equivalence, a coarser equivalence relation. Compare weak homotopy equivalence versus homotopy equivalence for compact metric spaces.

(b) In §6 we shall see that an open principal G-fibration over a CW complex is a fibre-bundle, and hence that there is a natural weak homotopy equivalence \(BG \to \hat{B}G \).

(c) This paper is an outgrowth of the authors' work [3] on strong pro-homotopy theory (Steenrod homotopy theory). See also Remark (6.6(b)).
2. Open principal G-fibrations. We recall some of the theory of open principal G-fibrations due to J. Cohen [1]. Let G be a compact metric group. Suppose G acts principally (on the right) on a compact metric space E; i.e., for any point y in E the orbit $\{yg | g \in G\}$ is homeomorphic to G. If the quotient map $p: E \to E/G$ is open and is a Hurewicz fibration (has the covering homotopy property), p is called an open principal G-fibration.

Open principal G-fibrations arise naturally as the limits of bundle maps. More precisely, let $\{G_n\}$ be a Lie series for G (L. Pontryagin [13, §46]), i.e., $\{G_n\}$ is a tower of Lie groups bonded by surjections π_n and $\lim \{G_n\} = G$. (We may use a tower for the Lie series of G because G is a compact metric group.) Assume, without loss of generality, that $G_0 = \{e\}$.

Cohen associates to an open principal G-fibration $G \to E \to X$ the tower of G_n-bundles over X. We shall frequently call such a tower a principal G_n-fibration over X and use the notation

$$\{ \xi_n: G_n \to E_n \to X \}.$$ (2.2)

(2.3) Remarks. The maps π_{n+1} and π'_n above are principal bundle maps with fibre $K_{n+1} \equiv \ker(\pi_{n+1}: G_{n+1} \to G_n)$.

Conversely, Cohen shows that applying the inverse limit functor \lim to the principal $\{G_n\}$-fibration (2.2) yields an open principal G-fibration where $G = \lim \{G_n\}$.

We shall call principal $\{G_n\}$-fibrations over a compact metric space X isomorphic if the diagrams (2.1) are level-wise isomorphic over id_X. Let $k_{\{G_n\}}(X)$ denote the class of isomorphism classes of principal $\{G_n\}$-fibrations over X and $k_G(X)$ the class of isomorphism classes of open principal G-fibrations over X. Summarizing, we have the following

(2.4) Proposition (J. Cohen [1]). Let G be a compact metric group with Lie series $\{G_n\}$ and let X be a compact metric space. Then there are natural isomorphisms

$$k_G(X) \xleftarrow{\lim} \{ \cdot \times_G G_n \} \xrightarrow{k_{\{G_n\}}(X)}$$
Therefore, (1.2) will follow if we can show

\[[X, \hat{BG}] \cong k_{(G_n)}(X). \]

(2.5)

We shall need the following notation. If \(H \) is a topological group, let

\[\xi_H: H \to EH \to BH \]

be Milgram's resolution (classifying space) \([10]\) applied to \(H \). See §4.

Let \(G \) be a compact metric group with Lie series \(\{G_n\} \). Let

\[\hat{\xi}_{(G_n)} \equiv \{G_n \to EG_n \to BG_n\}, \]
\[\hat{E}G \equiv \lim \{EG_n\}, \hat{BG} \equiv \lim \{BG_n\}, \]
\[\hat{\xi}_G \equiv G \to \hat{E}G_n \to \hat{BG}_n, \text{ and} \]
\[\hat{\xi}_{(G_n)} \equiv \{G_n \to E'G_n \to \hat{BG}_n\} \]

(take pullbacks of \(EG_n \) over \(\hat{BG} \)). (Note that \(\lim \{E'G\} = \hat{E}G \).)

We shall call \(\hat{\xi}_G \) the standard universal principal open \(G \)-fibration, see (1.2), (6.4).

There is a natural map \(BG \to \hat{BG} \). In §6 we shall see that this map is a weak homotopy equivalence.

\[(2.6) \text{Proposition. For any compact metric space } X, \text{ any levelwise map of principal } \{G_n\}-\text{fibrations, or any map of open principal } G-\text{fibrations over } \text{id}_X \text{ is an isomorphism.} \]

\[\text{Proof. The first result follows easily from the analogous result in bundle theory; see, e.g., [6, p. 42]. The second result then follows by the proof of Proposition (2.4). } \]

\[\Box \]

3. Compatible local sections. We shall need suitable versions of local sections and associated partitions of unity for principal \(\{G_n\} \)-fibrations \(\{G_n \to E_n \to X\} \) over compact metric spaces. An easy inductive argument, using local sections and associated partitions of unity for the principal bundle maps \(\pi_{n+1} : E_{n+1} \to E_n \) associated with a principal \(\{G_n\} \)-fibration (see (2.4)), yields the following.

\[(3.1) \text{Proposition. Let } \{G_n \to E_n \to X\} \text{ be a principal } \{G_n\}-\text{fibration over a compact metric space } X. \text{ Then, for each } n \geq 0, \text{ there is a finite open cover } \]

\[\U_n = \{U_{(i_0, i_1, \ldots, i_n)} | i_k \in I_k \}, \]
\[a \text{ family of local sections.} \]

\[\varphi_n = \{s_{(i_0, i_1, \ldots, i_n)} : U_{(i_0, i_1, \ldots, i_n)} \to E_n\}, \]
\[a \text{ partition of unity} \]

\[\varphi_n = \{h_{(i_0, i_1, \ldots, i_n)} : X \to [0, 1]\} \]

subordinate to \(\U_n \), which satisfy the following compatibility conditions.
(4.1) Standard simplicial resolutions; see, e.g., [7]. Given a topological group G, define a simplicial G-space (simplicial object over the category of right G-spaces) $(\mathcal{S}G_n, d_i: \mathcal{S}G_n \to \mathcal{S}G_{n-1}, s_i: \mathcal{S}G_n \to \mathcal{S}G_{n+1} | n > 0, 0 < i < n)$ by

$$\mathcal{S}G_n = G^{n+1} = \{(g_0, g_1, \ldots, g_n)\},$$

$$d_i(g_0, g_1, \ldots, g_n) = (g_0, g_1, \ldots, g_{i-1}, g_{i+1}, \ldots, g_n),$$

$$s_i(g_0, g_1, \ldots, g_n) = (g_0, g_1, \ldots, g_{i-1}, e, g_{i+1}, \ldots, g_n).$$

Regard G as a constant simplicial object, and let $\mathcal{S}G = \mathcal{S}G \times G^\ast$ be the quotient simplicial space. The sequence $G \to \mathcal{S}G \to \mathcal{B}G$ forms the standard simplicial resolution of G.

(4.2) Milgram’s resolution. Following G. Segal [17] and others, let $R: \text{simplicial spaces} \to \mathcal{C}G$ (compactly generated spaces) be the extension of J. Milnor’s geometric realization functor [12]. Then [16], [17], [7], [5], the sequence

$$(G \to \mathcal{E}G \to \mathcal{B}G) = (G = R\mathcal{S}G \to R\mathcal{S}G \to R\mathcal{S}\mathcal{B}G)$$

is Milgram’s resolution (classifying space) for G. The following results show the usefulness of Milgram’s construction.

(4.3) Proposition (Steenrod [16]). Let G and H be topological groups. Then $E(G \times H) \simeq \mathcal{E}G \times \mathcal{E}H$ as $(G \times H)$-spaces, hence $B(G \times H) \simeq BG \times BH$. □

(4.4) Proposition. Let $p: G \to H$ be a surjection of Lie groups with kernel K. Then the induced map $Bp: \mathcal{B}G \to \mathcal{B}H$ is a bundle map with fibre BK.

Proof (outlined). By L. Pontryagin [13, §44], G is locally isomorphic to $K \times H$ as sets under a local multiplication $K \times H \to G$. By the proof of (4.3) (in terms of simplicial G-spaces), BG is locally isomorphic to $BK \times BH$ near the basepoint. But the map Bp is homogeneous because the map $Ep: \mathcal{E}G \to \mathcal{E}H$ is a map of topological groups [16]. The conclusion follows. □

We shall need the following formulas for classifying maps and homotopies between classifying maps. Compare, e.g., [6, pp. 54–57].

(4.5) Alternate coordinates for Milgram’s resolution. If G is a topological...
OPEN PRINCIPAL FIBRATIONS

group, the map $G^{n+1} \to G^{n+1}$ given by
\[(g_0, g_1, \ldots, g_n) \mapsto (g_0 g_1 \ldots g_n, g_1 g_2 \ldots g_m, \ldots, g_n) \]
yields an isomorphism of G-spaces, where G acts on the rightmost factor of
the "domain" G^{n+1}, and G acts diagonally (on the right) on the "range"
G^{n+1}. This yields "delete-repeat" coordinates for EG and, hence, EG with
these coordinates:

\[G^n = G^{n+1} = \{(g_0, g_1, \ldots, g_n)\}, \]
\[d_i(g_0, g_1, \ldots, g_n) = (g_0, g_1, \ldots, g_{i-1}, g_i+1, \ldots, g_n), \]
\[s_i(g_0, g_1, \ldots, g_n) = (g_0, g_1, \ldots, g_{i-1}, g_i, g_i, g_i, g_i, g_i+1, \ldots, g_n). \]

Thus [16] each point in EG may be represented uniquely as $((g_0, g_1, \ldots, g_n),$
$(t_0, t_1, \ldots, t_n))$ where $g_i \neq g_{i+1}$ and $t_i \neq 0$ for all i.

(4.6) Classifying maps. As in [6, pp. 54-57], given a principal G-bundle
$\xi: G \to E \to X$ over a compact metric space X, a finite open cover $\mathcal{U} = \{U_i\}$
of X, local sections $s_i: U_i \to E$, and a partition of unity (h_i) subordinate to
\mathcal{U}, there is a canonical classifying map $X \to BG$ for ξ given by an explicit
formula. We omit the details.

(4.7) Linear homotopies. Compare [6, pp. 54-57]. The maps $f_{m,n}(G^{m+1} \times
\Delta^n) \to (G^{n+1} \times \Delta^n) \to EG$ defined by
\[f_{m,n}(((g_0, g_1, \ldots, g_m), (t_0, t_1, \ldots, t_m)), s,\]
\[(g_0, g_1, \ldots, g_m, g_0, g_1, \ldots, g_m), (t_0, t_1, \ldots, t_m)) \]
\[= ((g_0, g_1, \ldots, g_m, g_0, g_1, \ldots, g_m),\]
\[((1-s)(t_0, t_1, \ldots, t_m), s(t_0, t_1, \ldots, t_m))) \]
define an equivariant map $\mu: EG \times EG$ (diagonal action on the join) $\to EG$
whose restriction to each factor is the identity.

Now suppose that $f, f': X \to BG$ classify $G \to E \to X$. Let $\tilde{f}, \tilde{f}': E \to EG$ be
the associated maps on total spaces. Define an equivariant homotopy $H: E
\times I \to EG$ by the formula $H(y, s) = \mu(f(y), s, f'(y))$. Then the induced
map $H: X \times I \to BG$ provides a canonical "linear homotopy" from f to f'.

5. The transformation α. Let $f: X \to \hat{B}G$ be a continuous map. We may
associate to f the principal (G_n)-fibration $f^*\xi_{(G_n)}$ over X where
$\xi_{(G_n)}: \{G_n\} \to \{E'G_n\} \to \hat{B}G$ is the universal (G_n)-fibration over $B\hat{G}$; see §2. This yields a
function from the set of continuous maps $X \to \hat{B}G$ to $k_{(G_n)}(X)$. In this section
we shall prove that homotopic maps $X \to \hat{B}G$ induce isomorphism principal
(G_n)-fibrations over X, and thus define a natural transformation of functors
\[\alpha: \hat{B}G \to k_{(G_n)}(\cdot), \quad \alpha_x: [c, \hat{B}G] \to k_{(G_n)}(X) \]
from compact metric spaces to pointed sets.

(5.1) PROPOSITION. Let X be a compact metric space and let $\xi = \{\xi_n: G_n \to$
$E_x \to X \times I$ be a principal $\{G_n\}$-fibration over $X \times I$. Let $\xi^0 = \{\xi^0_i\}$ and $\xi^1 = \{\xi^1_i\}$ be the restrictions of ξ to $X \times 0$ and $X \times 1$, respectively. Then there is an isomorphism $\xi^0 \to \xi^1$.

Proof (outlined). Use Proposition (3.1) and the usual proof that the restrictions of an ordinary bundle over $X \times I$ to $X \times 0$ and $X \times 1$ are isomorphic (e.g., Husemoller [6, pp. 54–57]) to inductively define compatible bundle maps $f_n: \xi_n \to \xi_n^1 \subset \xi_n$. The required isomorphism is given by $\{f_n\}: \xi^0 \to \xi^1$.

(5.2) Corollary. Let $f, g: X \to \hat{BG}$ be homotopic maps. Then f and g induce isomorphism principal $\{G_n\}$-fibrations over X.

Proof. Let $H: X \times I \to \hat{BG}$ be a homotopy from f to g. Then $f^* \xi = (H^* \xi)^0 = (H^* \xi)^1$ (by (5.1)) = $g^* \xi$. □

This yields a well-defined natural transformation $\alpha: \{\cdot, \hat{BG}\} \to \{k_{(G_n)}(\cdot)\}$.

6. Proof of (1.2). We shall prove our main result, that the natural transformation $\alpha: \{X, \hat{BG}\} \to k_{(G_n)}(X)$ is an isomorphism for compact metric X, by constructing classifying maps for principal $\{G_n\}$-fibrations.

(6.1) Construction of classifying maps. Let $\xi = \{\xi_n: G_n \to E_n \to X\}$ be a principal $\{G_n\}$-fibration over a compact metric space X.

Use Proposition (3.1) to obtain compatible finite open covers \mathcal{U}_n, families of local sections S_n, and associated partitions of unity \mathcal{K}_n. Use (4.6) to obtain classifying maps $f_n: X \to BG_n$ for each bundle $\xi_n: G_n \to E_n \to X$ from this data. A lengthy but straightforward computation shows that the diagrams

\[
\begin{array}{ccc}
E_{n+1} & \cong & f_{n+1}^*EG_{n+1} \\
\downarrow & & \downarrow \\
X & \cong & \hat{BG}_{n+1}
\end{array}
\quad \begin{array}{ccc}
f_n^*X & \cong & f_n^*\hat{BG}_n \\
\downarrow & & \downarrow \\
f_n^*E_n & \cong & f_n^*BG_n \\
\downarrow & & \downarrow \\
X & \cong & \hat{BG}_n
\end{array}
\]

commute. Our construction thus yields the following.

(6.2) Proposition. Let $\xi = \{\xi_n: G_n \to E_n \to X\}$ be a principal $\{G_n\}$-fibration over a compact metric space X. Then there is a classifying map $f: X \to \hat{BG}$ with $\xi \simeq f^*\xi_{(G_n)}$.

Proof. Let $f = \lim_n\{f_n\}: X \to \hat{BG} \equiv \lim_n\{BG_n\}$. The conclusion follows. □

(6.3) Proposition. Isomorphic principal $\{G_n\}$-fibrations over a compact metric space have homotopic classifying maps.
Proof. Let $\xi = \{\xi_n: G_n \to E_n \to X\}$ and $\xi' = \{\xi'_n: G'_n \to E'_n \to X\}$ be isomorphic principal (G_n)-fibrations over X "classified" by f and mapping X to BG, and $\xi \cong f^*\xi_G$, and $\xi' \cong f'\xi_G$. Because $\xi \cong \xi'$, $f'(=f' \circ \text{id}_X)$ also classifies ξ. We obtain a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & BG \\
\downarrow \quad \quad \quad \quad \quad \quad \downarrow \\
E_n & \xrightarrow{\gamma_n} & E_G \\
\downarrow \quad \quad \quad \quad \quad \quad \downarrow \\
E_{n+1} & \xrightarrow{\gamma_{n+1}} & E_{G_{n+1}} \\
\end{array}
\]

in which $\{\tilde{f}_n: E_n \to E_G\}$ is a compatible family of equivariant maps and a similar diagram involving $f': X \to \hat{B}G$ and $\{\tilde{f}'_n: E_n \to E_G\}$. Now use Proposition (4.8) to obtain compatible, equivariant "linear" homotopies $\{\tilde{H}_n: E_n \times I \to E_G\}$ with $H_n|_0 = f_n$ and $H_n|_1 = f'_n$. Passing to quotient spaces yields compatible homotopies $\{H_n: X \times I \to \hat{B}G\}$. Finally, the required homotopy is given by $H = \lim (H_n): X \times I \to \hat{B}G$ ($H|_0 = f$ and $H|_1 = f'$).

(6.4) Proof of (1.2). Propositions (6.2)–(6.3) yield a well-defined function $\beta: k_G(X) \to [X, \hat{B}G]$, where β associates to a bundle ξ its classifying map $\beta(\xi) \in [X, \hat{B}G]$. By construction, $\xi \cong \alpha(\beta(\xi)) \equiv \beta(\xi)\xi_G$. Also, if $[f] \in [X, \hat{B}G]$, $\beta(\alpha(f))$ and f both classify $f^*\xi_G$, so $[\beta(\alpha(f))] = [f]$ by (6.7). Therefore $\alpha: [X, \hat{B}G] \to k_G(X)$ and β are inverse isomorphisms.

(6.5) Proposition. (a) Every open principal G-fibration over a CW complex is a principal G-bundle. (b) The natural map $BG \to \hat{B}G$ is a weak homotopy equivalence.

Proof. By (1.2) or a direct argument similar to (5.1), k_G is a homotopy functor, so each open principal G-fibration over a contractible space is a principal G-bundle. (a) now follows. (b) now follows from studying open principal G-fibrations over spheres.

(6.6) Remarks. (a) The above classification results can be extended to open principal G-fibrations over paracompact spaces.

(b) The classifying space $\hat{B}G = \lim\{BG\}$ can be interpreted as the
homotopy inverse limit \([6, \S 4]\), \(\operatorname{holim}\{BG_n\}\), of the tower of fibrations \(\{BG_n\}\); see (4.6). In this sense \(\hat{BG}\) is a kind of completion of \(BG\); consider, for example, profinite groups \(G\).

REFERENCES

16. \underline{Steenrod}, \textit{Milgram’s classifying space of a topological group}, Topology \textbf{7} (1968), 349–368. MR 38 #1675.

DEPARTMENT OF MATHEMATICS, SUNY, BINGHAMTON, NEW YORK 13901

DEPARTMENT OF MATHEMATICS, HOFSTRA UNIVERSITY, HEMPSTEAD, NEW YORK 11550 (Current address of H. M. Hastings)

Current address (D. A. Edwards): Department of Mathematics, University of Georgia, Athens, Georgia 30602