Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Projective modules over subrings of $ k[X, Y]$


Author: David F. Anderson
Journal: Trans. Amer. Math. Soc. 240 (1978), 317-328
MSC: Primary 13C10; Secondary 13F20, 14F05
DOI: https://doi.org/10.1090/S0002-9947-1978-0485827-5
MathSciNet review: 0485827
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study projective modules over subrings of $ k[X,Y]$. Conditions are given for projective modules to decompose into free $ \oplus $ rank 1 modules. Our main result is that if k is an algebraically closed field and A a subring of $ B = k[X,Y]$ with $ A \subset B$ integral and $ {\text{sing}}(A)$ finite, then all f.g. projective A-modules have the form free $ \oplus $ rank 1. We also give several examples of subrings of $ k[X,Y]$ which have indecomposable projective modules of rank 2.


References [Enhancements On Off] (What's this?)

  • [1] D. F. Anderson, Projective modules over subrings of $ k[X,Y]$, Dissertation, Univ. of Chicago, Chicago, Ill., 1976.
  • [2] -, Projective modules over subrings of $ k[X,Y]$ generated by monomials (submitted).
  • [3] H. Bass, Algebraic K-theory, Benjamin, New York, 1968. MR 0249491 (40:2736)
  • [4] M. Krusemeyer, Fundamental groups, algebraic K-theory, and a problem of Abyhyankar, Invent. Math. 19 (1973), 15-47. MR 0335522 (49:303)
  • [5] H. Matsumura, Commutative algebra, Benjamin, New York, 1970. MR 0266911 (42:1813)
  • [6] J. Milnor, Introduction to algebraic K-theory, Princeton Univ. Press, Princeton, N. J., 1971. MR 0349811 (50:2304)
  • [7] M. P. Murthy, Vector bundles over affine surfaces birationally equivalent to a ruled surface, Ann. of Math. (2) 89 (1969), 242-253. MR 0241434 (39:2774)
  • [8] M. P. Murthy and C. Pedrini, $ {K_0}$ and $ {K_1}$ of polynomial rings, Algebraic K-theory. II, Lecture Notes in Math., vol. 342, Springer, Berlin, 1973, pp. 109-121. MR 0376654 (51:12829)
  • [9] M. P. Murthy and R. G. Swan, Vector bundles over affine surfaces. Invent Math. 36 (1976), 125-165. MR 0439842 (55:12724)
  • [10] M. Nagata, On the closedness of singular loci, Inst. Hautes Études Sci. Publ. No. 2, (1952), 5-12.
  • [11] C. Pedrini, On the $ {K_0}$ of certain polynomial extensions, Algebraic K-theory. II, Lecture Notes in Math., vol. 342, Springer, Berlin, 1973, pp. 92-108. MR 0371882 (51:8099)
  • [12] P. Samuel, Unique factorization domains (Lecture notes), Tata Institute, Bombay, 1964. MR 0214579 (35:5428)
  • [13] J. P. Serre, Sur les modules projectifs, Séminaire Dubriel-Pisot 14 (1960-61), No. 2.
  • [14] C. S. Seshadri, Triviality of vector bundles over the affine space $ {K^2}$, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 456-458. MR 0102527 (21:1318)
  • [15] R. G. Swan, Serre's problem, Conference on Commutative Algebra, Queen's Papers in Pure and Appl. Math., No. 42, Kingston, Ont., 1975.
  • [16] W. van der Kallen, Le $ {K_2}$ des nombres duaux, C. R. Acad. Sci. Paris 273 (1971), 1204-1207. MR 0291158 (45:252)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13C10, 13F20, 14F05

Retrieve articles in all journals with MSC: 13C10, 13F20, 14F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0485827-5
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society