Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sets of divergence on the group $ 2\sp{\omega }$


Authors: David C. Harris and William R. Wade
Journal: Trans. Amer. Math. Soc. 240 (1978), 385-392
MSC: Primary 42A56
DOI: https://doi.org/10.1090/S0002-9947-1978-0487242-7
MathSciNet review: 0487242
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that there exist uncountable sets of divergence for $ C({2^\omega })$. We also show that a necessary and sufficient condition that a set E be a set of divergence for $ {L^p}({2^\omega }),1 < p < \infty $, is that E be of Haar measure zero.


References [Enhancements On Off] (What's this?)

  • [1] P. Billard, Sur la convergence presque partout des séries de Fourier-Walsh des functions de l'espace $ {L^2}[0,1]$, Studia Math. 28 (1966/67), 363-388. MR 36 #599. MR 0217510 (36:599)
  • [2] N. J. Fine, On the Walsh functions, Trans Amer. Math. Soc. 65 (1949), 372-414. MR 11, 352. MR 0032833 (11:352b)
  • [3] L. H. Harper, Capacities of sets and harmonic analysis on the group $ {2^\omega }$, Trans. Amer. Math. Soc. 126 (1967), 303-315. MR 34 #6445. MR 0206627 (34:6445)
  • [4] Y. Katznelson, An introduction to harmonic analysis, Wiley, New York, 1968. MR 40 #1734. MR 0248482 (40:1734)
  • [5] V. Prohorenko, Divergent Fourier series with respect to Haar's system, Izv. Vysš. Učebn. Zaved. Matematika 1971, no. 1 (104), 62-68. MR 45 #4051. MR 0294983 (45:4051)
  • [6] F. Schipp, Construction of a continuous function whose Walsh series diverges at a prescribed point, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 9 (1966), 103-108. MR 34 #6430. MR 0206612 (34:6430)
  • [7] -, Über die Grossenordnung der Partialsummen der Entwicklung integrierbarer Funktionen nach W-Systemen, Acta. Sci. Math. (Szeged) 28 (1967), 123-134. MR 35 #4667. MR 0213810 (35:4667)
  • [8] P. Sjölin, An inequality of Paley and convergence a.e. of Walsh-Fourier series, Ark. Mat. 7 (1969), 551-570. MR 39 #3222. MR 0241885 (39:3222)
  • [9] E. M. Stein, On limits of sequences of operators, Ann. of Math. (2) 74 (1961), 140-170. MR 23 #A2695. MR 0125392 (23:A2695)
  • [10] W. R. Wade, Sets of divergence of the group $ {2^\omega }$, Notices Amer. Math. Soc. 21 (1974), A-162. Abstract #711-42-1.
  • [11] -, A uniqueness theorem for Haar and Walsh series, Trans. Amer. Math. Soc. 141 (1969), 187-194. MR 39 #4587. MR 0243265 (39:4587)
  • [12] J. L. Walsh, A closed set of normal orthogonal functions, Amer J. Math. 45 (1923), 5-24. MR 1506485

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A56

Retrieve articles in all journals with MSC: 42A56


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0487242-7
Keywords: Walsh functions, Rademacher functions, homogeneous Banach spaces, the group $ {2^\omega }$, sets of divergence
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society