Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Solution of the nonlinear problem $ Au=N(u)$ in a Banach space


Authors: Martin Schechter, Jack Shapiro and Morris Snow
Journal: Trans. Amer. Math. Soc. 241 (1978), 69-78
MSC: Primary 47H15; Secondary 47H10
DOI: https://doi.org/10.1090/S0002-9947-1978-0492290-7
MathSciNet review: 492290
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We solve a nonlinear problem $ Au\, = \,N(u)$ where A is semi-Fredholm and N is a nonlinear compact operator.


References [Enhancements On Off] (What's this?)

  • [1] H. Brezis, Équations et inéquations non linéaires dan les espaces vectoriels en dualité Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 1,115-175. MR 42 #5113. MR 0270222 (42:5113)
  • [2] F. E. Browder, Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, Contributions to Nonlinear Functional Analysis, Math. Res. Center Publ. No. 27, Academic Press, New York, 1971, pp. 425-501. MR 51 #2823. MR 0394340 (52:15143)
  • [3] D. G. de Figueiredo, On the range of nonlinear operators with linear asymptotes which are not invertible, Comment. Math. Univ. Carolinae 15 (1974), 415-428. MR 51 #1507. MR 0365254 (51:1507)
  • [4] D. G. de Figueiredo and C. P. Gupta, Nonlinear integral equations of Hammerstein type involving unbounded monotone linear mappings, J. Math. Anal. Appl. 39 (1972), 37-48. MR 46 #4297. MR 0305167 (46:4297)
  • [5] S. Fučík, Nonlinear equations with noninvertible linear part, Czechoslovak Math. J. 24 (99) (1974), 467-484. MR 50 #1066. MR 0348568 (50:1066)
  • [6] -, Surjectivity of operators involving linear noninvertible part and nonlinear compact perturbation, Funkcial. Ekvac. 17 (1974), 73-83. MR 51 #1508. MR 0365255 (51:1508)
  • [7] S. Fučík and J. Nečas, Spectral theory of nonlinear operators, Proc. Equadiff III (Third Czechoslovak Conf. on Differential Equations and Their Applications, Brno, 1972), Folia Fac. Sci. Natur. Univ. Purkynianae Brunensis, Ser. Monograph, Tomus 1, Purkynê Univ., Brno, 1973, pp. 163-174. MR 50 #3043. MR 0350551 (50:3043)
  • [8] K. Gustafson and D. Sather, Large nonlinearities and monotonicity, Arch. Rational Mech. Anal. 48 (1972), 109-122. MR 40 #1239. MR 0336465 (49:1239)
  • [9] -, Large nonlinearities and closed linear operators, Arch. Rational Mech. Anal. 52 (1973), 10-19. MR 40 #1251. MR 0336477 (49:1251)
  • [10] P. Hess, On nonlinear mappings of monotone type homotopic to odd operators, J. Functional Analysis 11 (1972), 138-167. MR 50 #3017. MR 0350525 (50:3017)
  • [11] -, On the Fredholm alternative for nonlinear functional equations in Banach spaces, Proc. Amer. Math. Soc. 33 (1972), 55-61. MR 46 #743. MR 0301585 (46:743)
  • [12] Martin Schechter, Principals of functional analysis, Academic Press, New York, 1971. MR 0445263 (56:3607)
  • [13] -, A nonlinear elliptic boundary value problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 707-716 (1974). MR 51 #6141. MR 0369912 (51:6141)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47H15, 47H10

Retrieve articles in all journals with MSC: 47H15, 47H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0492290-7
Keywords: Nonlinear operator, nonlinear perturbation, compact operator, semi-Fredholm operator, fixed point theorem, existence theorem
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society