Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ R$-separable coordinates for three-dimensional complex Riemannian spaces


Authors: C. P. Boyer, E. G. Kalnins and Willard Miller
Journal: Trans. Amer. Math. Soc. 242 (1978), 355-376
MSC: Primary 53B20; Secondary 22E70, 35A22
DOI: https://doi.org/10.1090/S0002-9947-1978-0496814-5
MathSciNet review: 496814
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We classify all R-separable coordinate systems for the equations $ \Sigma _{i,j = 1}^3\,{g^{ - 1/2}}{\partial _j}({g^{1/2}}{g^{ij}}{\partial _i}\psi ) = 0$ and $ \Sigma_{i,j\, = \,1}^3 {{g^{ij}}{\partial _i}W{\partial _j}W\, = \,0} $ with special emphasis on nonorthogonal coordinates, and give a group-theoretic interpretation of the results. We show that for flat space the two equations separate in exactly the same coordinate systems.


References [Enhancements On Off] (What's this?)

  • [1] L. P. Eisenhart, Stäckel systems in conformal Euclidean space, Ann. of Math. 36 (1935), 57-70. MR 1503208
  • [2] E. G. Kalnins and W. Miller, Jr., Lie theory and separation of variables. 9. Orthogonal R-separable coordinate systems for the wave equation $ {\psi _{tt}} - {\Delta _2}\psi = 0$, J. Mathematical Phys. 17 (1976), 331-355. MR 0404523 (53:8325a)
  • [3] -, Lie theory and separation of variables. 10. Nonorthogonal R-separable solutions of the wave equation $ {\partial _{tt}}\psi = {\Delta _2}\psi $, J. Mathematical Phys. 17 (1976), 356-368. MR 0404524 (53:8325b)
  • [4] C. Boyer, E. G. Kalnins and W. Miller, Jr., Symmetry and separation of variables for the Helmholtz and Laplace equations, Nagoya Math. J. 60 (1976), 35-80. MR 0393791 (52:14600)
  • [5] C. P. Boyer and E. G. Kalnins, Symmetries of the Hamilton-Jacobi equation, J. Mathematical Phys. 18 (1977), 1032-1045. MR 0438969 (55:11871)
  • [6] C. P. Boyer, E. G. Kalnins and W. Miller, Jr., Symmetry and separation of variables for the Hamilton-Jacobi equation $ W_t^2\, - \,W_x^2\, - \,W_y^2\, = \,0$, J. Mathematical Phys. 19 (1978), 200-211. MR 0473472 (57:13138)
  • [7] E. G. Kalnins and W. Miller, Jr., Separable coordinates for three-dimensional complex Riemannian spaces, J. Differential Geometry (to appear). MR 587550 (82e:53038)
  • [8] C. P. Boyer, E. G. Kalnins and W. Miller, Jr., Lie theory and separation of variables. 6. The equation $ i{U_t} + {\Delta _2}U = 0$, J. Mathematical Phys. 16 (1975), 499-511. MR 0372383 (51:8593g)
  • [9] W. Miller, Jr., Symmetry, separation of variables, and special functions, Theory and Application of Special Functions (R. Askey, Editor), Academic Press, New York, 1975. MR 0390327 (52:11153)
  • [10] K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957. MR 0088769 (19:576f)
  • [11] P. Moon and D. Spencer, Field theory handbook, Springer-Verlag, Berlin, 1961. MR 947546 (89i:00026)
  • [12] L. P. Eisenhart, Riemannian geometry, Princeton Univ. Press, Princeton, N. J., 1949 (second printing). MR 0035081 (11:687g)
  • [13] E. G. Kalnins and W. Miller, Jr., Lie theory and the wave equation in space-time. 2. The group $ O(4,C)$, SIAM J. Math. Anal, (to appear). MR 0507309 (58:22421b)
  • [14] -, Lie theory and separation of variables. 11. The EPD equation, J. Mathematical Phys. 17 (1976), 369-377. MR 0404525 (53:8325c)
  • [15] A. Erdelyi et al., Higher transcendental functions, Vol. II, McGraw-Hill, New York, 1953.
  • [16] M. Bôcher, Die Reihentwickelungen der Potentialtheorie, Leipzig, 1894.
  • [17] E. G. Kalnins and W. Miller, Jr., Lie theory and separation of variables. 5. The equations $ i{U_t} + {U_{xx}} = 0$ and $ i{U_t} + {U_{xx}} - (c/{x^2})U = 0$, J. Mathematical Phys. 15 (1974), 1728-1737. MR 0372382 (51:8593f)
  • [18] L. Ovsjannicov, Group properties of differential equations, Academy of Sciences USSR, Novosibirsk, 1962. (Russian).
  • [19] L. P. Eisenhart, Potentials for which Schrödinger equations are separable, Phys. Rev. 74 (1948), 87. MR 0025056 (9:590b)
  • [20] A. Makarov, J. Smorodinsky, K. Valiev and P. Winternitz, A systematic search for nonrelativistic systems with dynamical symmetries. Part I: The integrals of motion, Nuovo Cimento A 52 (1967), 1061-1084.
  • [21] Y. Smorodinsky and I. Tugov, On complete sets of observables, Soviet Physics JETP (1966), 434-436.
  • [22] N. Levinson, B. Bogert and R. M. Redheffer, Separation of Laplace's equation, Quart. Appl. Math. 7 (1949), 241-262. MR 0032091 (11:251f)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53B20, 22E70, 35A22

Retrieve articles in all journals with MSC: 53B20, 22E70, 35A22


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0496814-5
Keywords: Conformal symmetry, flat space, Hamilton-Jacobi equation, Laplace equation, separation of variables
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society