Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On approximation by shifts and a theorem of Wiener


Author: R. A. Zalik
Journal: Trans. Amer. Math. Soc. 243 (1978), 299-308
MSC: Primary 41A30
DOI: https://doi.org/10.1090/S0002-9947-1978-0493077-1
MathSciNet review: 0493077
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the completeness in $ {L_2}(R)$ of sequences of the form $ \{ f({c_n} - t)\} $, where $ \{ {c_n}\} $ is a sequence of distinct real numbers. A Müntztype theorem is proved, valid for a large class of functions and, in particular, for $ f(t) = \exp ( - {t^2})$.


References [Enhancements On Off] (What's this?)

  • [1] N. Wiener, The Fourier integral and certain of its applications, Cambridge Univ. Press, Cambridge, 1933; reprint, Dover, New York, 1958. MR 0100201 (20:6634)
  • [2] R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., no. 19, Amer. Math. Soc., Providence, R. I., 1934. MR 1451142 (98a:01023)
  • [3] N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., no. 26, Amer. Math. Soc., Providence, R. I, 1940. MR 0003208 (2:180d)
  • [4] L. Schwartz, Etude des sommes d'exponentielles, 2nd ed., Hermann, Paris, 1959. MR 0106383 (21:5116)
  • [5] S. Karlin, Total positivity, Stanford Univ. Press, Stanford, Calif., 1968. MR 0230102 (37:5667)
  • [6] I. I. Hirschman and D. V. Widder, The convolution transform, Princeton Univ. Press, Princeton, N. J., 1955. MR 0073746 (17:479c)
  • [7] D. Leviatan, A new approach to the representation theory for convolution transforms, Pacific J. Math. 35 (1970), 441-449. MR 0276692 (43:2432)
  • [8] C. Danon and D. Leviatan, A representation theorem for convolution transform with determining function in $ {L^p}$, Pacific J. Math. 62 (1976), 81-86. MR 0425534 (54:13489)
  • [9] W. A. J. Luxemburg and J. Korevaar, Entire functions and Müntz-Szász type approximation, Trans. Amer. Math. Soc. 157 (1971), 23-37. MR 0281929 (43:7643)
  • [10] Y. Katznelson, An introduction to harmonic analysis, Wiley, New York, 1968. MR 0248482 (40:1734)
  • [11] R. P. Boas, Jr., Entire functions, Academic Press, New York, 1954. MR 0068627 (16:914f)
  • [12] D. V. Widder, The Laplace transform, Princeton Univ. Press, Princeton, N. J., 1972.
  • [13] I. M. Gel'fand and G. E. Šilov, Fourier transforms of rapidly increasing functions and questions of the uniqueness of the solution of Cauchy's problem, Uspehi Mat. Nauk 8 (1953), 3-54; English transl., Amer. Math. Soc. Transl. (2) 5 (1957), 221-274. MR 0083624 (18:736a)
  • [14] E. C. Titchmarsh, Theory of Fourier integrals, 2nd ed., Oxford Univ. Press, London, 1948; reprinted 1967.
  • [15] R. E. Edwards, The translations of a function holomorphic in a half-plane and related problems in the real domain, Proc London Math. Soc. (3) 1 (1951), 118-128. MR 0042051 (13:44e)
  • [16] -, Functional analysis, theory and applications, Holt, Rinehart and Winston, New York, 1965. MR 0221256 (36:4308)
  • [17] M. M. Džrbašjan and V. M. Martirosjan, Theorems of Paley-Wiener and Müntz-Szász type, Dokl. Akad. Nauk SSSR 225 (1975), 1001-1004 = Soviet Math. Dokl. 16 (1975), 1559-1563 (1976). MR 0396923 (53:783)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A30

Retrieve articles in all journals with MSC: 41A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0493077-1
Keywords: Approximation by sequences of shifts in $ {L_2}(R)$, entire functions of order 2, Fourier inversion
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society