Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the stable decomposition of $ \Omega \sp{2}S\sp{r+2}$


Authors: E. H. Brown and F. P. Peterson
Journal: Trans. Amer. Math. Soc. 243 (1978), 287-298
MSC: Primary 55D35
DOI: https://doi.org/10.1090/S0002-9947-1978-0500933-4
MathSciNet review: 0500933
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that $ {\Omega ^2}{S^{r + 2}}$ is stably homotopy equivalent to a wedge of suspensions of other spaces $ C_k^1$, and that $ C_k^1$ is homotopy 2-equivalent to the Brown-Gitler spectrum.


References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnold, Topological invariants of algebraic functions. II, Functional Anal. Appl. 4 (1970), 91-98. MR 0276244 (43:1991)
  • [2] J. Birman, Braids, links, and mapping class groups, Ann. of Math. Studies, no. 82, Princeton Univ. Press, Princeton, N. J., 1974. MR 0375281 (51:11477)
  • [3] E. Brown and S. Gitler, A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra, Topology 12 (1973), 283-295. MR 0391071 (52:11893)
  • [4] E. Brown and F. Peterson, Relations among characteristic classes. I, Topology 3 (1964), 39-52. MR 0163326 (29:629)
  • [5] F. R. Cohen, T. J. Lada and J. P. May, The homology of iterated loop spaces, Lecture Notes in Math., vol. 533, Springer, New York, 1976. MR 0436146 (55:9096)
  • [6] F. R. Cohen, M. E. Mahowald and R. J. Milgram, The stable decomposition for the double loop space of a sphere (to appear). MR 520543 (80j:55009)
  • [7] R. Cohen, On odd primary homotopy theory, Thesis, Brandeis Univ., 1978.
  • [8] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118. MR 0141126 (25:4537)
  • [9] R. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126. MR 0150755 (27:742)
  • [10] D. B. Fuks, Cohomologies of the group COS $ \bmod\,2$, Functional Anal. Appl. 4 (1970), 143-151.
  • [11] M. Mahowald, A new infinite family in $ {2^{\pi _{\ast}^s}}$, Topology 16 (1977), 249-256. MR 0445498 (56:3838)
  • [12] V. P. Snaith, A stable decomposition of $ {\Omega ^n}{S^n}X$, J. London Math. Soc. 2 (1974), 577-583. MR 0339155 (49:3918)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55D35

Retrieve articles in all journals with MSC: 55D35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0500933-4
Keywords: Loop spaces, Brown-Gitler spectrum
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society