Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Absolute continuity in the dual of a Banach algebra


Author: Stephen Jay Berman
Journal: Trans. Amer. Math. Soc. 243 (1978), 169-194
MSC: Primary 46H05; Secondary 46J05
DOI: https://doi.org/10.1090/S0002-9947-1978-0502901-5
MathSciNet review: 502901
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If A is a Banach algebra, G is in the dual space $ {A^{\ast}}$, and I is a closed ideal in A, then let $ {\left\Vert G \right\Vert _{{I^{\ast}}}}$ denote the norm of the restriction of G to I. We define a relation $ \ll $ in $ {A^{\ast}}$ as follows: $ G \ll L$ if for every $ \varepsilon > 0$ there exists a $ \delta > 0$ such that if I is a closed ideal in A and $ {\left\Vert L \right\Vert _{{I^{\ast}}}} < \delta $ then $ {\left\Vert G \right\Vert _{{I^{\ast}}}} < \varepsilon $. We explore this relation (which coincides with absolute continuity of measures when A is the algebra of continuous functions on a compact space) and related concepts in the context of several Banach algebras, particularly the algebra $ {C^1}[0,1]$ of differentiable functions and the algebra of continuous functions on the disc with holomorphic extensions to the interior. We also consider generalizations to noncommutative algebras and Banach modules.


References [Enhancements On Off] (What's this?)

  • [1] R. Arens, Operations induced in function classes, Monatsh. Math. Physik 55 (1951), 1-19. MR 0044109 (13:372b)
  • [2] -, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 0045941 (13:659f)
  • [3] P. Civin and B. Yood, The second conjugate of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 0143056 (26:622)
  • [4] C. Fefferman and E. M. Stein, $ {H^p}$ spaces of several variables, Acta Math. 129 (1972), 137-193. MR 0447953 (56:6263)
  • [5] E. Hewitt and K. Ross, Abstract harmonic analysis. II, Springer-Verlag, Berlin and New York, 1970. MR 0262773 (41:7378)
  • [6] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 0133008 (24:A2844)
  • [7] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 0131498 (24:A1348)
  • [8] C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N. J., 1960. MR 0115101 (22:5903)
  • [9] S. Sakai, $ {C^{\ast}}$-algebras and $ {W^{\ast}}$-algebras, Springer-Verlag, Berlin and New York, 1970.
  • [10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 0290095 (44:7280)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46H05, 46J05

Retrieve articles in all journals with MSC: 46H05, 46J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0502901-5
Keywords: Ideals in Banach algebras, absolute continuity, Radon-Nikodym theorems
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society