Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Interpolation by complex splines


Author: J. Tzimbalario
Journal: Trans. Amer. Math. Soc. 243 (1978), 213-222
MSC: Primary 41A15
DOI: https://doi.org/10.1090/S0002-9947-1978-0502903-9
MathSciNet review: 502903
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we solve the problem of interpolation by certain class of cardinal complex splines. This solution is used to complete the study of cardinal trigonometric splines started in [10] and also to give shorter proofs and to complete the results found for the interpolation problem by complex splines over the unit circle by I. J. Schoenberg [9], J. H. Ahlberg, E. N. Nilson and J. L. Walsh [1].


References [Enhancements On Off] (What's this?)

  • [1] J. H. Ahlberg, E. N. Nilson and J. L. Walsh, Complex polynomial splines on the unit circle, J. Math. Anal. Appl. 33 (1971), 234-257. MR 0277963 (43:3696)
  • [2] -, Complex cubic splines, Trans. Amer. Math. Soc. 129 (1967), 391-413. MR 0217484 (36:573)
  • [3] -, Properties of analytic splines, J. Math. Anal. Appl. 27 (1969), 262-278. MR 0273255 (42:8136)
  • [4] S. L. Lee, A. Sharma and J. Tzimbalario, A class of cardinal splines with Hermite type interpolation, J. Approximation Theory 18 (1976), 30-38. MR 0422956 (54:10940)
  • [5] C. A. Micchelli, Cardinal $ \mathcal{L}$-splines, Splines and Approximation Theory, Academic Press, New York, 1976.
  • [6] I. J. Schoenberg, On Charles Micchelli' s theory of cardinal $ \mathcal{L}$-splines, Splines and Approximation Theory, Academic Press, New York, 1976. MR 0393934 (52:14741)
  • [7] -, On trigonometric spline interpolation, J. Math. Mech. 13 (1964), 795-826. MR 0165300 (29:2589)
  • [8] -, Cardinal spline interpolation, CBMS Regional Conf. Monograph 12, SIAM, Philadelphia, 1973.
  • [9] -, On polynomial spline functions on the unit circle. I, II, Proc. Conf. Theoretic Functions, Akademiai Kiado, Budapest, 1971.
  • [10] A. Sharma and J. Tzimbalario, A class of cardinal trigonometric splines, SIAM J. Math. Anal. 7 (1976), 809-819. MR 0417633 (54:5683)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A15

Retrieve articles in all journals with MSC: 41A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0502903-9
Keywords: Cardinal complex splines, Euler-Frobenius polynomials
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society