Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Nullity and generalized characteristic classes of differential manifolds


Author: Sin Leng Tan
Journal: Trans. Amer. Math. Soc. 243 (1978), 75-88
MSC: Primary 57D20
DOI: https://doi.org/10.1090/S0002-9947-1978-0515728-5
MathSciNet review: 0515728
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using the Kamber-Tondeur construction of characteristic classes for foliated bundes, the author has given a method for constructing generalized characteristic classes for a differentiable manifold M without imposing conditions on M. In particular a vanishing theorem on the manifold M is obtained. The construction is particularly useful if the ordinary characteristic ring Pont*(M) of the manifold M vanishes much below the dimension of M.


References [Enhancements On Off] (What's this?)

  • [1] R. Bott, Lectures on characteristic classes and foliations, Lecture Notes in Math., vol. 279, Springer-Verlag, New York, 1972. MR 0362335 (50:14777)
  • [2] R. Bott and A. Haefliger, On characteristic classes of $ \Gamma $-foliations, Bull. Amer. Math. Soc. 78 (1972), 1039-1044. MR 46#6370. MR 0307250 (46:6370)
  • [3] H. Cartan, Cohomologie réelle d'un espace fibré principal différentiable, Séminaire de Topologie Algébrique de l'Ecole Normale Supérieure, 1949/50, Exposés 19, 20, Math. Dept., M.I.T., Cambridge, Mass. MR 14, 670.
  • [4] S. S. Chern and N. Kuiper, Some theorems on the isometric imbedding of compact Riemannian manifolds in Euclidean space, Ann. of Math. (2) 56 (1952), 422-430. MR 14,408. MR 0050962 (14:408e)
  • [5] S. S. Chern and J. Simons, Some cohomology classes in principal fiber bundles and their application to Riemannian geometry, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 791-794. MR 43 #5453. MR 0279732 (43:5453)
  • [6] C. Godbillon and J. Vey, Un invariant des feuilletages de codimension 1, GR. Acad. Sci. Paris Ser. A-B 273 (1971), A92-A95. MR 44# 1046. MR 0283816 (44:1046)
  • [7] F. Kamber and Ph. Tondeur, Cohomologie des algèbres de Weil relatives tronquées, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A459-A462; Algébres de Weil semi-simpliciales, ibid., A1177-A1179; Homomorphisme caractéristique d'un fibre principal feuilleté, ibid., A1407-A1410; Classes caractéristiques derivés d'un fibré principal feuilleté, ibid., A1449-A1452. MR 47 #9660, 9661, 9662; MR 50 #4271. MR 0321127 (47:9660)
  • [8] -, Characteristic invariants of foliated bundles, Manuscripta Math. 11 (1974), 51-89. MR 48 #12556. MR 0334237 (48:12556)
  • [9] -, Non-trivial characteristic invariants of homogeneous foliated bundles, Ann. Ecole Norm. Sup. (to appear).
  • [10] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vols. I, II, Interscience, New York, 1963,1969. MR 27#2945; 38#6501. MR 0152974 (27:2945)
  • [11] R. Maltz, The nullity spaces of the curvature operator, Topologie et Géometrie Différentielle, Vol. 8, Centre Nat. Recherche Sci., Paris, 1966. MR 35 #940. MR 0210045 (35:940)
  • [12] J. S. Pasternack, Topological obstructions to integrability and the Riemannian geometry of smooth foliations, Thesis, Princeton Univ., 1970.
  • [13] S. L. Tan, On nullity distributions, Trans. Amer. Math Soc 223 (1976), 323-335. MR 0423393 (54:11372)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57D20

Retrieve articles in all journals with MSC: 57D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0515728-5
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society