Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Existence theorems for Pareto optimization; multivalued and Banach space valued functionals


Authors: L. Cesari and M. B. Suryanarayana
Journal: Trans. Amer. Math. Soc. 244 (1978), 37-65
MSC: Primary 49A36; Secondary 90A14
DOI: https://doi.org/10.1090/S0002-9947-1978-0506609-1
MathSciNet review: 506609
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Existence theorems are obtained for optimization problems where the cost functional takes values in an ordered Banach space. The order is defined in terms of a closed convex cone in the Banach space; and in this connection, several relevant properties of cones are studied and they are shown to coincide in the finite dimensional case. The notion of a weak (Pareto) extremum of a subset of an ordered Banach space is then introduced. Existence theorems are proved for extrema for Mayer type as well as Lagrange type problems-in a manner analogous to and including those with scalar valued cost. The side conditions are in the form of general operator equations on a class of measurable functions defined on a finite measure space. Needed closure and lower closure theorems are proved. Also, several analytic criteria for lower closure are provided. Before the appendix, several illustrative examples are given. In the appendix, a criterion (different from the one used in main text) is given and proved, for the Pareto optimality of an element.


References [Enhancements On Off] (What's this?)

  • [1] L. D. Berkovitz, Lower closure and existence theorems in optimal control, Proc. Internat. Conf. Differential Equations, Academic Press, New York, 1975, pp. 26-39. MR 0423158 (54:11139)
  • [2] A. Blaquière (Editor), Topics in differential games, North-Holland, Amsterdam, 1973.
  • [3] N. Bourbaki, Espaces vectoriels topologiques, Chapters I, II, Hermann, Paris, 1955. MR 14, 880.
  • [4] L. Cesari, Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. I,II, Trans. Amer. Math. Soc. 124 (1966), 369-412; ibid.124 (1966), 413-430. MR 34 #3392; 34 #3393. MR 0203542 (34:3392)
  • [5] -, Geometric and analytic views in existence theorems for optimal control in Banach spaces. I: Distributed parameters; II: Distributed and boundary controls; III: Weak solutions, J. Optimization Theory Appl. 14 (1974), 505-520; ibid. 15 (1975), 467-497; ibid. 19 (1976), 185-214. MR 0637216 (58:30594)
  • [6] -, Lower semicontinuity and lower closure theorems without seminormality conditions, Ann. Mat Pura Appl. (4) 48 (1974), 381-397. MR 49 #9705. MR 0344966 (49:9705)
  • [7] -, Closure theorems for orientor fields and weak convergence, Arch. Rational Mech. Anal. 55 (1974), 332-356. MR 50 #3081. MR 0350589 (50:3081)
  • [8] -, Sobolev spaces and multidimensional Lagrange problems of optimization, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 193-227. MR 38 # 1574. MR 0233252 (38:1574)
  • [9] -, Existence theorems for optimal controls of the Mayer type, SIAM J. Control 6 (1968), 517-552. MR 39 #4722. MR 0243400 (39:4722)
  • [10] L. Cesari and D. E. Cowles, Existence theorems in multidimensional problems of optimization with distributed and boundary controls, Arch. Rational Mech. Anal. 46 (1972), 321-355. MR 49 #1271. MR 0336497 (49:1271)
  • [11] L. Cesari and M. B. Suryanarayana, Closure theorems without seminormality conditions, J. Optimization Theory Appl. 15 (1975), 441-465. MR 0365278 (51:1531)
  • [12] -, Nemytsky's operators and lower closure theorems, J. Optimization Theory Appl. 19 (1976), 165-184. MR 0442790 (56:1169)
  • [13] -, Existence theorems for Pareto problems of optimization, Conf. Calculus of Variations, and Control Theory, Math. Research Center, Madison, Wis., 1975.
  • [14] M. Connors and D. Teichrow, Optimal control of dynamic operations research models, Internat. Textbook, Scranton, Pa., 1967.
  • [15] N. O. Dacunha and E. Polak, Constrained minimization under vector-valued criteria in linear topological spaces, Mathematical Theory of Control, Academic Press, New York, 1967, pp. 96-108. MR 41 #2496. MR 0257847 (41:2496)
  • [16] M. M. Day, Normed linear spaces, Academic Press, New York, 1962. MR 26 #2847. MR 0145316 (26:2847)
  • [17] G. Jameson, Ordered linear spaces, Lecture Notes in Math., vol.141, Springer-Verlag, Berlin and New York, 1970. MR 0438077 (55:10996)
  • [18] P. J. Kaiser, Existence theorems in the calculus of variations, Ph.D. thesis, Univ. of Michigan, 1973.
  • [19] P. J. Kaiser and M. B. Suryanarayana, Orientor field equations in Banach spaces, J. Optimization Theory Appl. 19 (1976), 141-164. MR 0428160 (55:1187)
  • [20] V. L. Klee, Jr., Convex sets in linear spaces. I, II, Duke Math. J. 18 (1951), 443-446; ibid. 18 (1951), 875-883. MR 13, 354; 13, 849. MR 0047251 (13:849a)
  • [21] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiĭ, Integral operators in spaces of summable functions, ``Nauka", Moscow, 1966. (Russian) MR 34 #6568. MR 0206751 (34:6568)
  • [22] E. J. McShane and R. B. Warfield, On Filippov's implicit functions lemma, Proc. Amer. Math. Soc. 18 (1967), 41-47. MR 34 #8399. MR 0208590 (34:8399)
  • [23] J. J. Moreau, Convexity and duality, Functional Analysis and Optimization, Academic Press, New York, 1966, pp. 145-169. MR 36 #706. MR 0217617 (36:706)
  • [24] C. Olech, Lexicographical order, range of integrals and ``bang-bang'' principle, Mathematical Theory of Control, Academic Press, New York, 1967, pp. 35-45. MR 40 #7916. MR 0254709 (40:7916)
  • [25] -, Weak lower semicontinuity of integral functionals, J. Optimization Theory Appl. 19 (1976), 3-16. MR 0428161 (55:1188)
  • [26] V. Pareto, Course d'economie politique, Lausanne, Rouge, 1896.
  • [27] S. Smale, Global analysis and economics, Dynamical Systems, Academic Press, New York, 1973. MR 49 #6283. MR 0341535 (49:6283)
  • [28] M. B. Suryanarayana, Remarks on lower semicontinuity and lower closure, J. Optimization Theory Appl. 19 (1976), 125-140. MR 0442789 (56:1168)
  • [29] H. F. Weinberger, Conditions for local Pareto optima (to appear).
  • [30] P. L. Yu, Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives, J. Optimization Theory Appl. 14 (1974). MR 52 #2628. MR 0381739 (52:2628)
  • [31] P. L. Yu and G. Leitmann, Nondominated decisions and cone convexity in dynamic multicriteria decision problems, J. Optimization Theory Appl. 14 (1974), 573-584. MR 52 # 10072. MR 0389241 (52:10072)
  • [32] L. A. Zadeh, Optimality and nonscalar valued performance criteria, IEEE Trans. Automatic Control AC-8 (1963), 59-60.
  • [33] J. P. Aubin, A Pareto minimum principle, Differential Games and Related Topics (H. W. Kuhn and G. P. Szego, Editors), North-Holland, Amsterdam, 1971, pp. 147-175. MR 0277459 (43:3192)
  • [34] L. Cesari and M. B. Suryanarayana, An existence theorem for Pareto problems, Nonlinear Analysis, Theory, Methods and Applications 2 (1978), 225-233. MR 512285 (81g:49008)
  • [35] M. B. Suryanarayana, Remarks on existence theorems for Pareto optimality, Dynamical Systems, a University of Florida International Symposium (A. R. Bednarek and L. Cesari, Editors), Academic Press, New York, 1977, pp. 335-347. MR 0500390 (58:18035)
  • [36] W. Stadler, A survey of multicriteria optimization, 1977 (preprint).
  • [37] C. Olech, Existence theorems for optimal problems with vector valued cost function, Trans. Amer. Math. Soc. 136 (1969), 159-180. MR 0234338 (38:2655)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49A36, 90A14

Retrieve articles in all journals with MSC: 49A36, 90A14


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0506609-1
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society