Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A $ q$-analog of restricted growth functions, Dobinski's equality, and Charlier polynomials


Author: Stephen C. Milne
Journal: Trans. Amer. Math. Soc. 245 (1978), 89-118
MSC: Primary 05A15; Secondary 33A65
DOI: https://doi.org/10.1090/S0002-9947-1978-0511401-8
MathSciNet review: 511401
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We apply finite operator techniques due to G. C. Rota to a combinatorial identity, which counts a collection of generalized restricted growth functions in two ways, and obtain a q-analog of Charlier polynomials and Dobinski's equality for the number of partitions of an n-set. Our methods afford a unified proof of certain identities in the combinatorics of finite dimensional vector spaces over $ {\text{GF}}(q)$.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Andrews and R. A. Askey, The classical and discrete orthogonal polynomials and their q-analogs (to appear).
  • [2] W. A. Al-Salam, q-Appell polynomials, Ann. Mat. Pura Appl. (4) 77 (1967), 31-45. MR 0223622 (36:6670)
  • [3] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000. MR 0027288 (10:283g)
  • [4] -, On abelian fields, Trans. Amer. Math. Soc. 35 (1933), 122-136. MR 1501675
  • [5] G. Dobinski, Summirungder Reihe $ \Sigma {{{n^m}} \mathord{\left/ {\vphantom {{{n^m}} {n!}}} \right. \kern-\nulldelimiterspace} {n!}}$ für m = 1, 2, 3, 4, 5,..., Grunert's Archiv 61 (1877), 333-336.
  • [6] J. Goldman and G. C. Rota, The number of subspaces of a vector-space, Recent Progress in Combinatorics, 1969, pp. 75-83. MR 0252232 (40:5453)
  • [7] W. Hahn, Über Orthogonalpolynome, die q-Differenzen-gleichungen genügen, Math. Nachr. 2 (1949), 4-34. MR 0030647 (11:29b)
  • [8] G. Hutchinson, Partitioning algorithms for finite sets, Comm. ACM 6 (1963), 613-614.
  • [9] S. Milne, Restricted growth functions and incidence relations of the lattice of partitions of an n-set, Advances in Math. 26 (1977), 290-305. MR 0485416 (58:5255)
  • [10] G. C. Rota, The number of partitions of a set, Amer. Math. Monthly 71 (1964), 498-504. MR 0161805 (28:5009)
  • [11] S. G. Williamson, Ranking algorithms for lists of partitions, SIAM J. Comput. 5 (1976), 602-617. MR 0446995 (56:5311)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 05A15, 33A65

Retrieve articles in all journals with MSC: 05A15, 33A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0511401-8
Keywords: Restricted growth functions, Dobinski's equality, Charlier polynomials, Eulerian derivative, Eulerian generating function, finite operator calculus, finite field, maximal chain, stabilizer groups of a chain, q-difference operator, q-Stirling numbers of the second kind
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society