A -analog of restricted growth functions, Dobinski's equality, and Charlier polynomials

Author:
Stephen C. Milne

Journal:
Trans. Amer. Math. Soc. **245** (1978), 89-118

MSC:
Primary 05A15; Secondary 33A65

MathSciNet review:
511401

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We apply finite operator techniques due to G. C. Rota to a combinatorial identity, which counts a collection of generalized restricted growth functions in two ways, and obtain a *q*-analog of Charlier polynomials and Dobinski's equality for the number of partitions of an *n*-set. Our methods afford a unified proof of certain identities in the combinatorics of finite dimensional vector spaces over .

**[1]**G. E. Andrews and R. A. Askey,*The classical and discrete orthogonal polynomials and their q-analogs*(to appear).**[2]**Walled A. Al-Salam,*𝑞-Appell polynomials*, Ann. Mat. Pura Appl. (4)**77**(1967), 31–45. MR**0223622****[3]**L. Carlitz,*𝑞-Bernoulli numbers and polynomials*, Duke Math. J.**15**(1948), 987–1000. MR**0027288****[4]**Leonard Carlitz,*On abelian fields*, Trans. Amer. Math. Soc.**35**(1933), no. 1, 122–136. MR**1501675**, 10.1090/S0002-9947-1933-1501675-9**[5]**G. Dobinski, Summirungder Reihe für m = 1, 2, 3, 4, 5,..., Grunert's Archiv**61**(1877), 333-336.**[6]**Jay Goldman and Gian-Carlo Rota,*The number of subspaces of a vector space*, Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics, 1968) Academic Press, New York, 1969, pp. 75–83. MR**0252232****[7]**Wolfgang Hahn,*Über Orthogonalpolynome, die 𝑞-Differenzengleichungen genügen*, Math. Nachr.**2**(1949), 4–34 (German). MR**0030647****[8]**G. Hutchinson,*Partitioning algorithms for finite sets*, Comm. ACM**6**(1963), 613-614.**[9]**Stephen Milne,*Restricted growth functions and incidence relations of the lattice of partitions of an 𝑛-set*, Advances in Math.**26**(1977), no. 3, 290–305. MR**0485416****[10]**Gian-Carlo Rota,*The number of partitions of a set*, Amer. Math. Monthly**71**(1964), 498–504. MR**0161805****[11]**S. G. Williamson,*Ranking algorithms for lists of partitions*, SIAM J. Comput.**5**(1976), no. 4, 602–617. MR**0446995**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
05A15,
33A65

Retrieve articles in all journals with MSC: 05A15, 33A65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1978-0511401-8

Keywords:
Restricted growth functions,
Dobinski's equality,
Charlier polynomials,
Eulerian derivative,
Eulerian generating function,
finite operator calculus,
finite field,
maximal chain,
stabilizer groups of a chain,
*q*-difference operator,
*q*-Stirling numbers of the second kind

Article copyright:
© Copyright 1978
American Mathematical Society