Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hyperbolicity and cycles


Authors: J. E. Franke and J. F. Selgrade
Journal: Trans. Amer. Math. Soc. 245 (1978), 251-262
MSC: Primary 58F15; Secondary 34C35
DOI: https://doi.org/10.1090/S0002-9947-1978-0511408-0
MathSciNet review: 511408
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper cycle points are defined without the assumption of Axiom A. The closure of the set of cycle points $ \mathcal{C}$ being quasi-hyperbolic is shown to be equivalent to Axiom A plus no cycles. Also we give a sufficient condition for $ \mathcal{C}$ to equal the chain recurrent set. In proving these theorems, a spectral decomposition for quasi-hyperbolic invariant sets is used.


References [Enhancements On Off] (What's this?)

  • [1] R. Churchill, J. Franke and J. Selgrade, A geometric criterion for hyperbolicity of flows, Proc. Amer. Math. Soc. 62 (1977), 137-143. MR 0428358 (55:1382)
  • [2] C. Conley, The gradient structure of a flow. I, IBM Research, RC 3932 (#17806), Yorktown Heights, New York, 1972.
  • [3] -, Hyperbolic sets and shift automorphisms, Dynamical System Theory and Application, Springer-Verlag, New York, 1975, pp. 539-549. MR 0455043 (56:13284)
  • [4] A. Dankner, On Smale's Axiom A dynamical systems, Ann. of Math. 107 (1978). MR 0488161 (58:7726b)
  • [5] J. Franke and J. Selgrade, Hyperbolicity and chain recurrence, J. Differential Equations 26 (1977), 27-36. MR 0467834 (57:7685)
  • [6] -, Abstract $ \omega $ limit sets, chain recurrent sets, and basic sets for flows, Proc. Amer. Math. Soc. 60 (1976), 309-316. MR 0423423 (54:11402)
  • [7] R. Mañé, Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc. 229 (1977), 351-370. MR 0482849 (58:2894)
  • [8] S. Newhouse, Hyperbolic limit sets, Trans. Amer. Math. Soc. 167 (1972), 125-150. MR 0295388 (45:4454)
  • [9] Z. Nitecki, Differentiable dynamics, M.I.T. Press, Cambridge, Mass., 1971. MR 0649788 (58:31210)
  • [10] C. Pugh and M. Shub, The $ \Omega $-stability theorem for flows, Inventiones Math. 11 (1970), 150-158. MR 0287579 (44:4782)
  • [11] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 0228014 (37:3598)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F15, 34C35

Retrieve articles in all journals with MSC: 58F15, 34C35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0511408-0
Keywords: Flows, Axiom A, spectral decomposition, cycle points, chain recurrent, quasi-hyperbolic invariant set
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society