Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Hamiltonian systems in a neighborhood of a saddle point


Author: Viorel Barbu
Journal: Trans. Amer. Math. Soc. 245 (1978), 291-307
MSC: Primary 49A40; Secondary 34G99, 47H15
DOI: https://doi.org/10.1090/S0002-9947-1978-0511411-0
MathSciNet review: 511411
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The behavior of Hamiltonian differential systems associated with a concave convex function H in a Hilbert space is studied by variational methods. It is shown that under quite general conditions on the function H the system behaves in a neighborhood of a minimax saddle point of H much like as in the classical theory of ordinary differential systems. The results extend previous work of R. T. Rockafellar.


References [Enhancements On Off] (What's this?)

  • [1] Viorel Barbu, Convex control problems of Bolza in Hilbert spaces, SIAM J. Control 13 (1975), 754–771. MR 0372714
  • [2] -, Nonlinear semigroups and evolution equations in Banach spaces, Noordhoff,Groningen, Publishing House of Romanian Academy, 1976.
  • [3] Viorel Barbu, Constrained control problems with convex cost in Hilbert space, J. Math. Anal. Appl. 56 (1976), no. 3, 502–528. MR 0487680, https://doi.org/10.1016/0022-247X(76)90022-6
  • [4] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, no. 5, North-Holland, Amsterdam, 1973.
  • [5] J. Moreau, Fonctionnelles convexes, Séminaire sur les équations aux dérivées partielles, College de France, 1966-1967.
  • [6] R. Tyrrell Rockafellar, Generalized Hamiltonian equations for convex problems of Lagrange, Pacific J. Math. 33 (1970), 411–427. MR 0276853
  • [7] R. Tyrrell Rockafellar, Saddle-points and convex analysis, Differential Games and Related Topics (Proc. Internat. Summer School, Varenna, 1970) North-Holland, Amsterdam, 1971, pp. 109–127. MR 0285947
  • [8] R. T. Rockafellar, Monotone operators associated with saddle-functions and minimax problems, Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 241–250. MR 0285942
  • [9] R. T. Rockafellar, Saddle points of Hamiltonian systems in convex problems of Lagrange, J. Optimization Theory Appl. 12 (1973), 367–390. MR 0358516, https://doi.org/10.1007/BF00940418
  • [10] R. Tyrrell Rockafellar, Saddle points of Hamiltonian systems in convex Lagrange problems having a nonzero discount rate, J. Econom. Theory 12 (1976), no. 1, 71–113. Hamiltonian dynamics in economics. MR 0475762, https://doi.org/10.1016/0022-0531(76)90028-4

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49A40, 34G99, 47H15

Retrieve articles in all journals with MSC: 49A40, 34G99, 47H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0511411-0
Keywords: Hamiltonian systems, concave-convex function, saddle point, subdifferential, Lagrange problem, Euler-Lagrange equations
Article copyright: © Copyright 1978 American Mathematical Society