Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An integral Riemann-Roch formula for induced representations of finite groups


Authors: Leonard Evens and Daniel S. Kahn
Journal: Trans. Amer. Math. Soc. 245 (1978), 331-347
MSC: Primary 55R40; Secondary 20C99
DOI: https://doi.org/10.1090/S0002-9947-1978-0511413-4
MathSciNet review: 511413
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let H be a subgroup of the finite group G, $ \xi $ a finite dimensional complex representation of H and $ \rho$ the induced representation of G. If $ {s_k}(\rho ) \in {H^{2k}}(G,\textbf{Z})$, $ k \geqslant 1$ denote the characteristic classes bearing the same relation to power sums that Chern classes bear to elementary symmetric functions, then we prove the following,

$\displaystyle \bar N (k)( {{s_k}(\rho ) - {\text{T}}{{\text{r}}_{H \to G}}({s_k}(\xi ))}) = 0,$ (1)

where

$\displaystyle \bar N(k) = {\prod _{\begin{array}{*{20}{c}} {p\vert N(k)} \\ {p{\text{prime}}} \\ \end{array}}}p$ (2)

and

$\displaystyle N(k) = \left( {\begin{array}{*{20}{c}} {\prod\limits_{p{\text{prime}}} {{p^{[k/p - 1]}}}} \end{array} } \right)/k!.$ (3)

(Tr denotes transfer.) Moreover, $ \bar N (k)$ is the least integer with this property.

This settles a question originally raised in a paper of Knopfmacher in which it was conjectured that the required bound was N(k).


References [Enhancements On Off] (What's this?)

  • [At] M. Atiyah, Characters and the cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math., No. 9 (1961). MR 0148722 (26:6228)
  • [Bor] A. Borel, Topics in the homology theory of fibre bundles, Lecture Notes in Mathematics, No. 36, Springer-Verlag, New York, 1967. MR 0221507 (36:4559)
  • [CE] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [Ch1] L. Evens, On the Chern classes of representations of finite groups, Trans. Amer. Math. Soc. 115 (1965), 180-193. MR 0212099 (35:2974)
  • [Ch2] L. Evens and D. Kahn, Chern classes of certain representations of symmetric groups, Trans. Amer. Math. Soc. 245 (1978), 309-330. MR 511412 (80k:55053)
  • [H] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966. MR 0202713 (34:2573)
  • [Kn] J. Knopfmacher, On Chern classes of representations of finite groups, J. London Math. Soc. 41 (1966), 535-541. MR 0196763 (33:4949)
  • [N] L. Evens, A generalization of the transfer map in the cohomology of groups, Trans. Amer. Math. Soc. 108 (1963), 54-65. MR 0153725 (27:3686)
  • [Q] D. Quillen, The spectrum of an equivariant cohomology ring. I, Ann. of Math. (2) 94 (1971), 549-572. MR 0298694 (45:7743)
  • [R] F. Roush, Transfer in generalized cohomology theories, Ph.D. Thesis, Princeton Univ., 1971.
  • [T1] C. B. Thomas, Riemann-Roch formulae for group representations, Matematika 20 (1973), 253-262. MR 0347949 (50:448)
  • [T2] -, An integral Riemann-Roch formula for flat line bundles, Proc. London Math. Soc. 34 (1977), 87-101. MR 0432739 (55:5722)
  • [W] H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N. J., 1946. MR 1488158 (98k:01049)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55R40, 20C99

Retrieve articles in all journals with MSC: 55R40, 20C99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0511413-4
Keywords: Characteristic class, Chern class, Knopfmacher, Riemann-Roch formula, induced representation, group, transfer, wreath product
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society