Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

A remark on zeta functions


Author: Jun-ichi Igusa
Journal: Trans. Amer. Math. Soc. 245 (1978), 419-429
MSC: Primary 12A70; Secondary 12A85, 44A15
MathSciNet review: 511420
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the adelic definition of the zeta function by Tate and Iwasawa, especially in the form given by Weil, one uses all Schwartz-Bruhat functions as ``test functions"; we have found that such an adelic zeta function relative to Q contains the Dedekind zeta function of any finite normal extension of Q and that the normality assumption can be removed if Artin's conjecture is true.


References [Enhancements On Off] (What's this?)

  • [1] Hideo Aramata, Über die Teilbarkeit der Dedekindschen Zetafunktionen, Proc. Imp. Acad. 9 (1933), no. 2, 31–34 (German). MR 1568340
  • [2] E. Artin, Ueber eine neue Art von L-Reihen, Abh. Math. Sem. Hamburg 3 (1924), 89-108.
  • [3] Richard Brauer, On the zeta-functions of algebraic number fields, Amer. J. Math. 69 (1947), 243–250. MR 0020597 (8,567h)
  • [4] G. H. Hardy and E. C. Titchmarsh, Self-reciprocal functions, Quart. J. Math. Oxford Ser. 1 (1930), 196-231.
  • [5] E. Hecke, Ueber die Zetafunktion beliebiger algebraischer Zahlkörper, Göttingen Nachrichten 1917, pp. 77-89; Vandenhoeck & Ruprecht, Göttingen, 1959, pp. 159-171.
  • [6] Jun-ichi Igusa, Complex powers and asymptotic expansions. I. Functions of certain types, J. Reine Angew. Math. 268/269 (1974), 110–130. Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, II. MR 0347753 (50 #254)
  • [7] Hj. Mellin, Abriß einer einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen, Math. Ann. 68 (1910), no. 3, 305–337 (German). MR 1511564, http://dx.doi.org/10.1007/BF01475775
  • [8] Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd XLVI, Springer-Verlag, Berlin, 1953 (German). 2te Aufl. MR 0057330 (15,208c)
  • [9] J. T. Tate, Fourier analysis in number fields, and Hecke’s zeta-functions, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 305–347. MR 0217026 (36 #121)
  • [10] H. Weber, Lehrbuch der Algebra. III, Friedr. Vieweg, Braunschweig, 1908.
  • [11] André Weil, Sur les “formules explicites” de la théorie des nombres premiers, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952), no. Tome Supplementaire, 252–265 (French). MR 0053152 (14,727e)
  • [12] -, Fonction zeta et distributions, Séminaire Bourbaki, vol. 312, 1966, pp. 1-9.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 12A70, 12A85, 44A15

Retrieve articles in all journals with MSC: 12A70, 12A85, 44A15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1978-0511420-1
PII: S 0002-9947(1978)0511420-1
Article copyright: © Copyright 1978 American Mathematical Society