Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A remark on zeta functions


Author: Jun-ichi Igusa
Journal: Trans. Amer. Math. Soc. 245 (1978), 419-429
MSC: Primary 12A70; Secondary 12A85, 44A15
DOI: https://doi.org/10.1090/S0002-9947-1978-0511420-1
MathSciNet review: 511420
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the adelic definition of the zeta function by Tate and Iwasawa, especially in the form given by Weil, one uses all Schwartz-Bruhat functions as ``test functions"; we have found that such an adelic zeta function relative to Q contains the Dedekind zeta function of any finite normal extension of Q and that the normality assumption can be removed if Artin's conjecture is true.


References [Enhancements On Off] (What's this?)

  • [1] H. Aramata, Ueber die Teilbarkeit der Dedekindschen Zetafunktionen, Proc. Imp. Acad. Japan 9 (1933), 31-34. MR 1568340
  • [2] E. Artin, Ueber eine neue Art von L-Reihen, Abh. Math. Sem. Hamburg 3 (1924), 89-108.
  • [3] R. Brauer, On the zeta-functions of algebraic number fields, Amer. J. Math. 69 (1947), 243-250. MR 0020597 (8:567h)
  • [4] G. H. Hardy and E. C. Titchmarsh, Self-reciprocal functions, Quart. J. Math. Oxford Ser. 1 (1930), 196-231.
  • [5] E. Hecke, Ueber die Zetafunktion beliebiger algebraischer Zahlkörper, Göttingen Nachrichten 1917, pp. 77-89; Vandenhoeck & Ruprecht, Göttingen, 1959, pp. 159-171.
  • [6] J. Igusa, Complex powers and asymptotic expansions. I. Functions of certain types, Crelles J. Math. 268/269 (1974), 110-130. MR 0347753 (50:254)
  • [7] H. Mellin, Abriss einer einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen, Math. Ann. 68 (1910), 305-337. MR 1511564
  • [8] R. Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der math. Wissenschaften, Band 46, Springer-Verlag, Berlin, 1936. MR 0057330 (15:208c)
  • [9] J. Tate, Fourier analysis in number fields and Hecke's zeta-functions, Thesis, Princeton University, 1950; Algebraic Number Theory, Thompson, Washington, D.C., 1967, pp. 305-347. MR 0217026 (36:121)
  • [10] H. Weber, Lehrbuch der Algebra. III, Friedr. Vieweg, Braunschweig, 1908.
  • [11] A. Weil, Sur les ``formules explicites'' de la théorie des nombres premiers, Comm. Sém. Math. Univ. Lund, 1952, pp. 252-265. MR 0053152 (14:727e)
  • [12] -, Fonction zeta et distributions, Séminaire Bourbaki, vol. 312, 1966, pp. 1-9.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 12A70, 12A85, 44A15

Retrieve articles in all journals with MSC: 12A70, 12A85, 44A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0511420-1
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society