Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Difference equations: disconjugacy, principal solutions, Green's functions, complete monotonicity


Author: Philip Hartman
Journal: Trans. Amer. Math. Soc. 246 (1978), 1-30
MSC: Primary 39A12
DOI: https://doi.org/10.1090/S0002-9947-1978-0515528-6
MathSciNet review: 515528
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We find analogues of known results on nth order linear differential equations for nth order linear difference equations. These include the concept of disconjugacy, Pólya's criterion for disconjugacy, Frobenius factorizations, generalized Sturm theorems, existence and properties of principal solutions, signs of Green's functions, and completely monotone families of solutions of equations depending on a parameter.


References [Enhancements On Off] (What's this?)

  • [1] M. Bôcher, Boundary problems and Green's functions for linear differential and difference equations, Ann. of Math. (2) 13 (1911/12), 71-88. MR 1502418
  • [2] W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, vol. 220, Springer-Verlag, Berlin and New York, 1971. MR 0460785 (57:778)
  • [3] M. Fekete, Ueber ein Problem von Laguerre, Rend. Circ. Mat. Palermo 34 (1912), 89-100.
  • [4] T. Fort, Finite differences, Oxford Univ. Press, Oxford, 1948. MR 0024567 (9:514a)
  • [5] F. R. Gantmacher and M. G. Krein, Oszillationsmatrizen, Oscillationskerne und kleine Schwingungen mechanischer Systeme, Akademie-Verlag, Berlin, 1960. MR 0114338 (22:5161)
  • [6] P. Hartman, Principal solutions of disconjugate n-th order linear differential equations, Amer. J. Math. 91 (1969), 306-362. MR 0247181 (40:450)
  • [7] -, Corrigendum and addendum: Principal solutions of disconjugate n-th order linear differential equations, Amer. J. Math. 93 (1971), 439-451. MR 0291557 (45:648)
  • [8] -, Completely monotone families of solutions of n-th order linear differential equations and infinitely divisible distributions, Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 267-287; 725. MR 0404760 (53:8560)
  • [9] P. Hartman and A. Wintner, Linear differential and difference equations with monotone coefficients, Amer. J. Math. 75 (1953), 731-743; see also Amer. J. Math. 76 (1954), 199-206.
  • [10] S. Karlin, Total positivity, Stanford Univ. Press, Stanford, Calif., 1968. MR 0230102 (37:5667)
  • [11] M. G. Kreĭn, Sur les fonctions de Green non-symétriques oscillatoires des opérateurs différentiels ordinaires, C. R. (Doklady) Acad. Sci. URSS (N.S.) 25 (1939), 643-646. MR 0002434 (2:52d)
  • [12] A. Ju. Levin, Some problems bearing on the oscillation of solutions of linear differential equations, Dokl. Acad. Nauk SSSR 148 (1963), 512-515 = Soviet Math. Dokl. 4 (1963), 121-124. MR 0146450 (26:3972)
  • [13] -, Non-oscillation of solutions of the equation $ {x^{\left( n \right)}}\, + \,{p_1}\left( t \right){x^{\left( {n - 1} \right)}}\, + \, \cdots + \,{p_n}\left( t \right)x\, = \,0$, Uspehi Mat. Nauk 24 (1969), 43-96 = Russian Math. Surveys 24 (1969), 43-99. MR 0254328 (40:7537)
  • [14] L. Lorch and P. Szego, Monotonicity of the differences of zeros of Bessel functions as a function of order, Proc. Amer. Math. Soc. 15 (1964), 91-96. MR 0158106 (28:1332)
  • [15] G. Mammana, Decomposizione delle expressioni differenziale lineari omogenee in prodotti di fattori simbolici e applicazione relativa allo studio delle equazioni differenziali lineari, Math. Z. 33 (1931), 186-231. MR 1545209
  • [16] Ju. V. Pokornyĭ, Some estimates of the Green's function of a multipoint boundary value problem. Mat. Zametki 4 (1968), 533-540. MR 0236453 (38:4748)
  • [17] G. Pólya, On the mean value theorem corresponding to a given linear homogeneous differential equation. Trans. Amer. Math. Soc. 24 (1924), 312-324. MR 1501228
  • [18] G. Pólya and G. Szegö, Aufgaben und Lehrsätzen aus der Analysis, vol. 2, reprint, Dover, New York, 1945.
  • [19] T. L. Sherman, Properties of solutions of n-th order linear differential equations, Pacific J. Math. 15 (1965), 1041-1066. MR 0185185 (32:2654)
  • [20] G. N. Watson, Theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1958.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 39A12

Retrieve articles in all journals with MSC: 39A12


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0515528-6
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society