Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On modular functions in characteristic $ p$


Author: Wen Ch’ing Winnie Li
Journal: Trans. Amer. Math. Soc. 246 (1978), 231-259
MSC: Primary 10D05
DOI: https://doi.org/10.1090/S0002-9947-1978-0515538-9
MathSciNet review: 515538
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k\, = \,{{\textbf{F}}_q}\left( T \right)$ be a function field of one variable over a finite field $ {{\textbf{F}}_q}$. For a nonzero polynomial $ A\, \in \,{{\textbf{F}}_q}\left[ T \right]$ one can define the modular group $ \Gamma \left( A \right)$. In this paper, we continue a theme introduced by Weil, and study the $ \lambda $-harmonic modular functions for $ \Gamma \left( A \right)$. The main purpose of this paper is to give a natural definition of $ \lambda $-harmonic Eisenstein series for $ \Gamma \left( A \right)$ so that we obtain a decomposition theory of $ \lambda $-harmonic modular functions, analogous to the classical results of Hecke. That is, we prove

$\displaystyle {\text{Modular}}\,{\text{Function}}\,{\text{ = }}\,{\text{Eisenstein}}\,{\text{series}}\, \oplus \,{\text{Cusp Functions}}{\text{.}}$

Moreover, the dimension of the space generated by $ \lambda $-harmonic Eisenstein series for $ \Gamma \left( A \right)$ is equal to the number of cusps of $ \Gamma \left( A \right)$, and so is independent of $ \lambda $.

For the definition of $ \lambda $-harmonic Eisenstein series and the proof of decomposition theory, we consider two cases: (i) $ \lambda \, \ne \, \pm 2\sqrt q $ and (ii) $ \lambda \, = \, \pm 2\sqrt q $, separately. Case (i) is treated in the usual way. Case (ii), being a ``degenerate'' case, is more interesting and requires more complicated analysis.


References [Enhancements On Off] (What's this?)

  • [1] P. Cartier, Fonctions harmoniques sur un arbre, Ist. Naz. Alta Mat., Symposia Mathematica, 9 (1972), 203-270. MR 0353467 (50:5950)
  • [2] P. Deligne, Formes modulaires et représentations l-adiques, Séminaire Bourbaki, 1968/1969, Exp. 355, Lecture Notes in Math., vol. 179, Springer-Verlag, Berlin, 1971, pp. 139-172.
  • [3] -, Les constantes des équations fonctionnelles des fonctions L, Modular Functions of One Variable. II, Lecture Notes in Math., vol. 349, Springer-Verlag, Berlin and New York, 1973, pp. 501-597. MR 0349635 (50:2128)
  • [4] P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup. 7 (1974), 507-530. MR 0379379 (52:284)
  • [5] G. Harder, Chevalley groups over function fields and automorphic forms, Ann. of Math. (2) 100 (1974), 249-306. MR 0563090 (58:27799)
  • [6] E. Hecke, Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1959. MR 0104550 (21:3303)
  • [7] T. Kubota, Elementary theory of Eisenstein series, Kodansha Ltd., Wiley, New York, 1973. MR 0429749 (55:2759)
  • [8] S. Lang, Algebraic number theory, Addison-Wesley, Reading, Mass., 1970. MR 0282947 (44:181)
  • [9] W. Li, Newforms and functional equations, Math. Ann. 212 (1975), 285-315. MR 0369263 (51:5498)
  • [10] H. Maass, Lectures on modular functions of one complex variable, Tata Institute of Fundamental Research, Bombay, 1964. MR 0218305 (36:1392)
  • [11] J.-P. Serre, Abres amalgames et $ {\text{S}}{{\text{L}}_2}$, Collège de France 1968/1969 (note polycopiées, rédigrées avec la collaboration de H. Bass).
  • [12] A. Weil, Basic number theory, Springer-Verlag, New York, 1967. MR 0234930 (38:3244)
  • [13] -, On the analogue of the modular group in characteristic p, Functional Analysis and Related Fields, Springer-Verlag, New York, 1970, pp. 211-223. MR 0271030 (42:5913)
  • [14] -, Dirichlet series and automorphic forms, Lecture Notes in Math., vol. 189, Springer-Verlag, Berlin and New York, 1971.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10D05

Retrieve articles in all journals with MSC: 10D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0515538-9
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society