On the first occurrence of values of a character

Authors:
G. Kolesnik and E. G. Straus

Journal:
Trans. Amer. Math. Soc. **246** (1978), 385-394

MSC:
Primary 10H35

MathSciNet review:
515545

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a character of order , and let be the smallest positive integer at which attains its st nonzero value. We consider fixed *k* and large *n* and combine elementary group-theoretic considerations with the known results on character sums and sets of integers without large prime factors to obtain estimates for .

**[1]**D. A. Burgess,*On character sums and 𝐿-series. II*, Proc. London Math. Soc. (3)**13**(1963), 524–536. MR**0148626****[2]**James H. Jordan,*The distribution of cubic and quintic non-residues*, Pacific J. Math.**16**(1966), 77–85. MR**0186619****[3]**Karl K. Norton,*Numbers with small prime factors, and the least 𝑘th power non-residue*, Memoirs of the American Mathematical Society, No. 106, American Mathematical Society, Providence, R.I., 1971. MR**0286739****[4]**Karl K. Norton,*Upper bounds for 𝑘𝑡ℎ power coset representatives modulo 𝑛*, Acta Arith.**15**(1968/1969), 161–179. MR**0240065****[5]**I. M. Vinogradov,*On the bound of the least non-residue of nth powers*, Bull. Acad. Sci. USSR**20**(1926), 47-58 (Trans. Amer. Math. Soc.**29**(1927), 218-226).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
10H35

Retrieve articles in all journals with MSC: 10H35

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1978-0515545-6

Article copyright:
© Copyright 1978
American Mathematical Society