Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Parabolic function spaces with mixed norm


Author: V. R. Gopala Rao
Journal: Trans. Amer. Math. Soc. 246 (1978), 451-461
MSC: Primary 46E35
DOI: https://doi.org/10.1090/S0002-9947-1978-0515551-1
MathSciNet review: 515551
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The spaces $ \mathcal{H}_\alpha ^p$ of parabolic Bessel potentials were introduced by B. F. Jones and R. J. Bagby. We prove a Sobolev-type imbedding theorem for $ \mathcal{H}_\alpha ^{{p_1},{p_2}}$ (multinormed versions of $ \mathcal{H}_\alpha ^p$) when $ \alpha $ is a positive integer k, $ 1 < {p_1}$, $ {p_2} < \infty $. In particular this theorem holds for $ W_{2l,l}^p$, since $ \mathcal{H}_{2l}^p \equiv W_{2l,l}^p$. We use the concepts of parabolic Riesz transforms and half-time derivatives introduced by us elsewhere.


References [Enhancements On Off] (What's this?)

  • [1] Richard J. Bagby, Lebesgue spaces of parabolic potentials, Illinois J. Math. 15 (1971), 610–634. MR 0291792
  • [2] David R. Adams and Richard J. Bagby, Translation-dilation invariant estimates for Riesz potentials, Indiana Univ. Math. J. 23 (1973/74), 1051–1067. MR 0348471, https://doi.org/10.1512/iumj.1974.23.23086
  • [3] A. Benedek and R. Panzone, The space 𝐿^{𝑝}, with mixed norm, Duke Math. J. 28 (1961), 301–324. MR 0126155
  • [4] A. Benedek, Spaces of differentiable functions and distributions, with mixed norm, Rev. Un. Mat. Argentina 22 (1964), 3–21 (1964). MR 0167838
  • [5] Lars Hörmander, Linear partial differential operators, Third revised printing. Die Grundlehren der mathematischen Wissenschaften, Band 116, Springer-Verlag New York Inc., New York, 1969. MR 0248435
  • [6] B. Frank Jones Jr., Lipschitz spaces and the heat equation, J. Math. Mech. 18 (1968/69), 379–409. MR 0511929
  • [7] B. Frank Jones Jr., Singular integrals and a boundary value problem for the heat equation., Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 196–207. MR 0235432
  • [8] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, R. I., 1968.
  • [9] P. I. Lizorkin, Multipliers of Fourier integrals and bounds of convolution in spaces with mixed norms, Math. USSR-Izv. 4 (1970), 225-254.
  • [10] V. R. Gopala Rao, A characterization of parabolic function spaces, Amer. J. Math. 99 (1977), no. 5, 985–993. MR 0500114, https://doi.org/10.2307/2373995
  • [11] C. H. Sampson, A characterization of parabolic Lebesgue spaces, Thesis, Rice Univ., 1968.
  • [12] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E35

Retrieve articles in all journals with MSC: 46E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0515551-1
Keywords: Parabolic Bessel potentials, parabolic Riesz transforms, half-derivative, imbedding theorem
Article copyright: © Copyright 1978 American Mathematical Society