Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Parabolic function spaces with mixed norm


Author: V. R. Gopala Rao
Journal: Trans. Amer. Math. Soc. 246 (1978), 451-461
MSC: Primary 46E35
MathSciNet review: 515551
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The spaces $ \mathcal{H}_\alpha ^p$ of parabolic Bessel potentials were introduced by B. F. Jones and R. J. Bagby. We prove a Sobolev-type imbedding theorem for $ \mathcal{H}_\alpha ^{{p_1},{p_2}}$ (multinormed versions of $ \mathcal{H}_\alpha ^p$) when $ \alpha $ is a positive integer k, $ 1 < {p_1}$, $ {p_2} < \infty $. In particular this theorem holds for $ W_{2l,l}^p$, since $ \mathcal{H}_{2l}^p \equiv W_{2l,l}^p$. We use the concepts of parabolic Riesz transforms and half-time derivatives introduced by us elsewhere.


References [Enhancements On Off] (What's this?)

  • [1] Richard J. Bagby, Lebesgue spaces of parabolic potentials, Illinois J. Math. 15 (1971), 610–634. MR 0291792 (45 #883)
  • [2] David R. Adams and Richard J. Bagby, Translation-dilation invariant estimates for Riesz potentials, Indiana Univ. Math. J. 23 (1973/74), 1051–1067. MR 0348471 (50 #969)
  • [3] A. Benedek and R. Panzone, The space 𝐿^{𝑝}, with mixed norm, Duke Math. J. 28 (1961), 301–324. MR 0126155 (23 #A3451)
  • [4] A. Benedek, Spaces of differentiable functions and distributions, with mixed norm, Rev. Un. Mat. Argentina 22 (1964), 3–21 (1964). MR 0167838 (29 #5104)
  • [5] Lars Hörmander, Linear partial differential operators, Third revised printing. Die Grundlehren der mathematischen Wissenschaften, Band 116, Springer-Verlag New York Inc., New York, 1969. MR 0248435 (40 #1687)
  • [6] B. Frank Jones Jr., Lipschitz spaces and the heat equation, J. Math. Mech. 18 (1968/69), 379–409. MR 0511929 (58 #23543)
  • [7] B. Frank Jones Jr., Singular integrals and a boundary value problem for the heat equation., Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 196–207. MR 0235432 (38 #3741)
  • [8] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, R. I., 1968.
  • [9] P. I. Lizorkin, Multipliers of Fourier integrals and bounds of convolution in spaces with mixed norms, Math. USSR-Izv. 4 (1970), 225-254.
  • [10] V. R. Gopala Rao, A characterization of parabolic function spaces, Amer. J. Math. 99 (1977), no. 5, 985–993. MR 0500114 (58 #17815)
  • [11] C. H. Sampson, A characterization of parabolic Lebesgue spaces, Thesis, Rice Univ., 1968.
  • [12] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44 #7280)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E35

Retrieve articles in all journals with MSC: 46E35


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1978-0515551-1
PII: S 0002-9947(1978)0515551-1
Keywords: Parabolic Bessel potentials, parabolic Riesz transforms, half-derivative, imbedding theorem
Article copyright: © Copyright 1978 American Mathematical Society