Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The fixed-point construction in equivariant bordism


Author: Russell J. Rowlett
Journal: Trans. Amer. Math. Soc. 246 (1978), 473-481
MSC: Primary 57R85
DOI: https://doi.org/10.1090/S0002-9947-1978-0515553-5
MathSciNet review: 515553
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the bordism $ {\Omega _ {\ast}}(G)$ of smooth G-actions. If K is a subgroup of G, with normalizer NK, there is a standard $ NK/K$-action on $ {\Omega _ {\ast}}(K)$(All, Proper). If M has a smooth G-action, a tubular neighborhood of the fixed set of K in M represents an element of $ {\Omega _ {\ast}}(K){({\text{All, Proper}})^{NK/K}}$. One thus obtains the ``fixed point homomorphism'' $ \phi $ carrying $ {\Omega _ {\ast}}(G)$ to the sum of the $ {\Omega _ {\ast}}(K){({\text{All, Proper}})^{NK/K}}$, summed over conjugacy classes of subgroups K. Let P be the collection of primes not dividing the order of G. We show that the P-localization of $ \phi $ is an isomorphism, and give several applications.


References [Enhancements On Off] (What's this?)

  • [1] P. E. Conner, Lectures on the action of a finite group, Lecture Notes in Math., vol. 73, Springer-Verlag, Berlin, 1968. MR 0258023 (41:2670)
  • [2] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 33, Springer-Verlag, Berlin, 1964. MR 0176478 (31:750)
  • [3] P. E. Conner and L. Smith, On the complex bordism of finite complexes, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 117-222. MR 0267571 (42:2473)
  • [4] J. Milnor, Construction of universal bundles, I, Ann. of Math. (2) 63 (1956), 272-284. MR 0077122 (17:994b)
  • [5] E. Ossa, Unitary bordism of abelian groups, Proc. Amer. Math. Soc. 33 (1972), 568-571. MR 0293666 (45:2743)
  • [6] R. J. Rowlett, Bounding a free action of an abelian group, Duke Math. J. 41 (1974), 381-385. MR 0341506 (49:6257)
  • [7] -, Torsion in the bordism of oriented involutions, Trans. Amer. Math. Soc. 231 (1977), 541-548. MR 0445521 (56:3861)
  • [8] R. E. Stong, Complex and oriented equivariant bordism, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, 1969), Markham, Chicago, 1970, pp. 291-316. MR 0273644 (42:8521)
  • [9] -, Unoriented bordism and actions of finite groups, Mem. Amer. Math. Soc. No. 103 (1970). MR 0273645 (42:8522)
  • [10] E. Wheeler, Oriented bordism of cyclic group actions, Thesis, Univ. of Virginia, Charlottesville, 1973.
  • [11] -, Localizing equivariant bordism, Proc. Amer. Math. Soc. 44 (1974), 485-491. MR 0345122 (49:9861)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R85

Retrieve articles in all journals with MSC: 57R85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0515553-5
Keywords: Finite group actions, equivalent bordism, fixed point homomorphism
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society