Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some metric properties of piecewise monotonic mappings of the unit interval


Author: Sherman Wong
Journal: Trans. Amer. Math. Soc. 246 (1978), 493-500
MSC: Primary 28D05; Secondary 58F11
DOI: https://doi.org/10.1090/S0002-9947-1978-0515555-9
MathSciNet review: 515555
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, the result of Lasota and Yorke on the existence of invariant measures for piecewise $ {C^2}$ functions is extended to a larger class of piecewise continuous functions. Also the result of Li and Yorke on the existence of ergodic measures for piecewise $ {C^2}$ functions is extended for the above class of functions.


References [Enhancements On Off] (What's this?)

  • [1] R. Bowen, Bernoulli maps of the interval, Israel J. Math. 28 (1977), 161-168. MR 0453974 (56:12225)
  • [2] R. Fischer, Ergodische Theorie von Ziffernentwicklungen in Wahrschleinlichkeitsraumen, Math. Z. 128 (1972), 217-230. MR 0313475 (47:2029)
  • [3] J. Guckenheimer, A strange, strange attractor, Lecture Notes Appl. Math. Sci., vol. 19, Springer-Verlag, Berlin and New York, 1976, pp. 368-391.
  • [4] A. Kosyakin and E. Sandier, Ergodic properties of a class of piecewise smooth mappings of the interval, Izv. Vysš. Učebn. Zaved. Matematika 72 (1972), no. 3, 32-40. (Russian)
  • [5] Z. Kowalski, Invariant measures for piecewise monotonic transformations, Lecture Notes in Math., vol. 472, Springer-Verlag, Berlin and New York, 1975, pp. 77-94. MR 0390173 (52:10999)
  • [6] O. E. Lanford, Qualitative and statistical theory of dissipative systems, Lectures from 1976 CIME School of Statistical Mechanics.
  • [7] A. Lasota and J. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488. MR 0335758 (49:538)
  • [8] T. Li and J. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc. 235 (1978), 183-192. MR 0457679 (56:15883)
  • [9] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), 130-141.
  • [10] V. A. Rohlin, Exact endomorphisms of a Lebesgue space, English transl., Amer. Math. Soc. Transl. (2) 39 (1964), 1-36. MR 0228654 (37:4234)
  • [11] W. Rudin, Principles of mathematical analysis, 2nd ed., McGraw-Hill, New York, 1964. MR 0166310 (29:3587)
  • [12] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 0228014 (37:3598)
  • [13] R. F. Williams, The structure of Lorenz attractors (preprint). MR 556583 (82b:58055b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28D05, 58F11

Retrieve articles in all journals with MSC: 28D05, 58F11


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0515555-9
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society