Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Distribution of eigenvalues of a two-parameter system of differential equations


Author: M. Faierman
Journal: Trans. Amer. Math. Soc. 247 (1979), 45-86
MSC: Primary 34B25; Secondary 34E05
MathSciNet review: 517686
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper two simultaneous Sturm-Liouville systems are considered, the first defined for the interval $ 0\, \leqslant \,{x_1}\, \leqslant \,1$, the second for the interval $ 0\, \leqslant \,{x_{2\,}}\, \leqslant \,1$, and each containing the parameters $ \lambda $ and $ \mu $. Denoting the eigenvalues and eigenfunctions of the simultaneous systems by $ ({\lambda _{j,k}},{\mu _{j,k}})$ and $ {\psi _{j,k}}({x_{1,}}{x_2})$, respectively, $ j,\,k\, = \,0,\,1,\, \ldots \,$, asymptotic methods are employed to derive asymptotic formulae for these expressions, as $ j + k \to \infty $ when $ (j,\,k)$ is restricted to lie in a certain sector of the $ (x,\,y)$ -plane. These results constitute a further stage in the development of the theory related to the behaviour of the eigenvalues and eigenfunctions of multiparameter Sturm-Liouville systems and answer an open question concerning the uniform boundedness of the $ {\psi _{j,k}}\,({x_1},\,{x_2})$.


References [Enhancements On Off] (What's this?)

  • [1] F. V. Atkinson, Multiparameter eigenvalue problems, Academic Press, New York-London, 1972. Volume I: Matrices and compact operators; Mathematics in Science and Engineering, Vol. 82. MR 0451001
  • [2] F. V. Atkinson, Multiparameter spectral theory, Bull. Amer. Math. Soc. 74 (1968), 1–27. MR 0220078, 10.1090/S0002-9904-1968-11866-X
  • [3] Patrick J. Browne, A multi-parameter eigenvalue problem, J. Math. Anal. Appl. 38 (1972), 553–568. MR 0305118
  • [4] A. A. Dorodnicyn, Asymptotic laws of distribution of the characteristic values for certain special forms of differential equations of the second order, Amer. Math. Soc. Transl. (2) 16 (1960), 1–101. MR 0117381
  • [5] M. Faierman, The completeness and expansion theorems associated with the multi-parameter eigenvalue problem in ordinary differential equations, J. Differential Equations 5 (1969), 197–213. MR 0232991
  • [6] M. Faierman, On the distribution of the eigenvalues of a two-parameter system of ordinary differential equations of the second order, SIAM J. Math. Anal. 8 (1977), no. 5, 854–870. MR 0447694
  • [7] -, An eigenfunction expansion associated with a two-parameter system of ordinary differential equations of the second order, preprint 125, Ben Gurion University of the Negev, Beer Sheva, 1975.
  • [8] -, Bounds for the eigenfunctions of a two-parameter system of ordinary differential equations of the second order (submitted).
  • [9] B. D. Sleeman, Completeness and expansion theorems for a two-parameter eigenvalue problem in ordinary differential equations using variational principles, J. London Math. Soc. (2) 6 (1973), 705–712. MR 0328196
  • [10] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34B25, 34E05

Retrieve articles in all journals with MSC: 34B25, 34E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0517686-7
Keywords: Two-parameter systems, simultaneous Sturm-Liouville systems, eigenvalues, eigenfunctions, asymptotic formulae, transition point, Bessel functions
Article copyright: © Copyright 1979 American Mathematical Society