Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the construction of branched coverings of low-dimensional manifolds


Authors: Israel Berstein and Allan L. Edmonds
Journal: Trans. Amer. Math. Soc. 247 (1979), 87-124
MSC: Primary 57M10
DOI: https://doi.org/10.1090/S0002-9947-1979-0517687-9
MathSciNet review: 517687
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Several general results are proved concerning the existence and uniqueness of various branched coverings of manifolds in dimensions 2 and 3. The results are applied to give a rather complete account as to which 3-manifolds are branched coverings of $ {S^3}$, $ {S^2}\, \times \,{S^1}$, $ {P^2}\, \times \,{S^1}$, or the nontrivial $ {S^3}$-bundle over $ {S^1}$, and which degrees can be achieved in each case. In particular, it is shown that any closed nonorientable 3-manifold is a branched covering of $ {P^2}\, \times \,{S^1}$ of degree which can be chosen to be at most 6 and with branch set a simple closed curve. This result is applied to show that a closed nonorientable 3-manifold admits an open book decomposition which is induced from such a decomposition of $ {P^2}\, \times \,{S^1}$.


References [Enhancements On Off] (What's this?)

  • [A1] J. W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), 370-372. MR 1560318
  • [A2] -, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 93-95.
  • [B] A. Borel, Seminar on transformation groups, Ann. of Math. Studies, No. 46, Princeton Univ. Press, Princeton, N.J., 1960. MR 0116341 (22:7129)
  • [E] D. B. A. Epstein, The degree of a map, Proc. London Math. Soc. (3) 16 (1966), 369-383. MR 0192475 (33:700)
  • [F] G. K. Francis, Assembling compact Riemann surfaces with given boundary curves and branch points on the sphere, Illinois J. Math. 20 (1976), 198-217. MR 0402776 (53:6590)
  • [He] M. Heins, Interior mapping of an orientable surface into $ {S^2}$, Proc. Amer. Math. Soc. 2 (1951), 951-952. MR 0045221 (13:547g)
  • [Hil] H. M. Hilden, Three-fold branched coverings of $ {S^3}$, Amer. J. Math. 98 (1976), 989-997. MR 0425968 (54:13917)
  • [Hir1] U. Hirsch, Über offene Abbildungen auf die 3-Sphäre, Math. Z. 140 (1974), 203-230. MR 0362313 (50:14755)
  • [Hir2] -, Offene Abbildungen von Flächen auf die 2-Sphäre mit minimalem Defekt, Arch. Math. 27 (1976), 649-656. MR 0431173 (55:4175)
  • [Hir3] -, On regular homotopy of branched coverings of the sphere, Manuscripta Math. 21 (1977), 293-306. MR 0482736 (58:2790)
  • [Hud] J. F. P. Hudson, Piecewise linear topology, Benjamin, New York, 1969. MR 0248844 (40:2094)
  • [Hur] A. Hurwitz, Uber Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1-60. MR 1510692
  • [Li1] W. B. R. Lickorish, Homeomorphisms of non-orientable two-manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 307-317. MR 0145498 (26:3029)
  • [Li2] -, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778; corrigendum, Proc. Cambridge Philos. Soc. 62 (1966), 679-681. MR 0171269 (30:1500)
  • [Lu] J. Lüroth, Note über Verzweigungsschnitte und Querschnitte in einer Riemann'schen Fläche, Math. Ann. 4 (1871), 181-184. MR 1509744
  • [M] J. M. Montesinos, Three-manifolds as 3-fold branched covers of $ {S^3}$, Quart. J. Math. Oxford Ser. (2) 27 (1976), 85-94. MR 0394630 (52:15431)
  • [Sta] J. Stallings, On fibering certain 3-manifolds, in Topology of 3-Manifolds (M. K. Fort, ed.), Prentice-Hall, Englewood Cliffs, N. J., 1962, 95-100. MR 0158375 (28:1600)
  • [Sto] S. Stöilow, Principes topologiques de la théorie des fonctions analytiques, Gauthier-Villars, Paris, 1938.
  • [T] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-85. MR 0061823 (15:890a)
  • [Wi] R. J. Wille, Sur la transformation intérieure d'une surface non-orientable sur le plan projéctif, Indag. Math. 56 (1953), 63-65. MR 0054059 (14:865c)
  • [Wo] J. W. Wood, Foliations on 3-manifolds, Ann. of Math. (2) 89 (1969), 336-358. MR 0248873 (40:2123)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M10

Retrieve articles in all journals with MSC: 57M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0517687-9
Keywords: Branched covering, 3-manifold, 2-manifold, nonorientable 3 manifold, open book decomposition, classical knot
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society