UNIQUELY ARCWISE CONNECTED PLANE CONTINUA
HAVE THE FIXED-POINT PROPERTY

BY
CHARLES L. HAGOPIAN

ABSTRACT. This paper contains a solution to a fixed-point problem of G. S. Young [17, p. 884] and R. H. Bing [4, Question 4, p. 124]. Let M be an arcwise connected plane continuum that does not contain a simple closed curve. We prove that every continuous function of M into M has a fixed point.

1. Introduction. A space S has the fixed-point property if for each continuous function f of S into S, there exists a point x of S such that $f(x) = x$. It is known that every arcwise connected plane continuum that does not separate the plane has the fixed-point property [6], [7]. In this paper we consider another class of arcwise connected plane continua.

A continuum M is uniquely arcwise connected if for each pair p, q of points of M, there exists exactly one arc in M with endpoints p and q. Note that a continuum is uniquely arcwise connected if and only if it is arcwise connected and does not contain a simple closed curve. The sin $1/x$ circle (Warsaw circle) is the simplest example of a uniquely arcwise connected plane continuum that separates the plane.

In [4, p. 123], Bing gave a dog-chases-rabbit argument that shows the sin $1/x$ circle has the fixed-point property. Recently L. Mohler [12] used the Markov-Kakutani theorem (measure theory) to prove that every homeomorphism of a uniquely arcwise connected continuum into itself has a fixed point.

We prove that every uniquely arcwise connected plane continuum has the fixed-point property. An example of Young [17, p. 884] shows that this theorem cannot be extended to all uniquely arcwise connected continua in Euclidean 3-space.
Our proof involves a continuous image of a ray defined by K. Borsuk [5] and a nested sequence of polygonal disks constructed by K. Sieklucki [15]. In [5], Borsuk established the fixed-point property for every hereditarily unicoherent arcwise connected continuum. Sieklucki [15] and H. Bell [2] proved that every nonseparating plane continuum with a hereditarily decomposable boundary has the fixed-point property.

2. Preliminaries. A continuum is a nondegenerate compact connected metric space.

Throughout this paper R^2 is the Cartesian plane with metric ρ. We denote the boundary, closure, and interior of a given set K by $\text{Bd } K$, $\text{Cl } K$, and $\text{Int } K$ respectively. The union of a collection \mathcal{K} of sets is denoted by $\text{St } \mathcal{K}$.

For each real number ξ, let $I(\xi)$ be the interval $\{(x, y) \in R^2: 0 < x < 1$ and $y = \xi\}$.

Definition. Suppose A is an arc, H is a continuum, and $A \cup H \subset R^2$. Then H straddles A if for each homeomorphism h of $\text{St}\{I(\xi): -1 < \xi < 1\}$ into R^2 with $h[I(0)] = A$, there exists a positive real number η such that $H \cap h[I(\xi)] \neq \emptyset$ when $|\xi| < \eta$.

Henceforth M is a uniquely arcwise connected continuum in R^2.

Notation. If u and v are distinct points of M, then the arc, the half-open arc, and the arc segment (open arc) in M with endpoints u, v are denoted by $M[u, v]$, $M[u, v)$, and $M(u, v)$ respectively.

Let P be the image in M of the ray $[1, +\infty)$ under a one-to-one continuous function ψ. For each positive integer n, let $a_n = \psi(n)$. The function ψ determines a linear ordering \prec of P with a_1 as the first point. In this section, if u and v are points of P, the notation $M[u, v]$, $M[u, v)$, and $M(u, v)$ will be used only when $u \prec v$.

Notation. For each point u of P, let $P(u)$ denote $\{v \in P: u = v$ or $u \prec v\}$.

Let $L = \bigcap_{n=1}^{\infty} \text{Cl } P(a_n)$. In this section we assume L is not degenerate. Hence L is a continuum.

Lemma 1. Suppose u and v are distinct points of M that belong to a complementary domain D of L. Then $\text{Cl } D$ contains $M[u, v]$.

Proof. Assume there is a point w of $M(u, v)$ in $R^2 \setminus \text{Cl } D$. Let J be an arc in D that is irreducible between $M[u, w]$ and $M[w, v]$. Every arc in M that intersects D and $R^2 \setminus \text{Cl } D$ is straddled by $\text{Bd } D$. Hence $\text{Bd } D$ intersects each complementary domain of $J \cup M[u, v]$. Since $\text{Bd } D \subset L$ and M does not contain a simple closed curve, for each positive integer n, there is a point z_n of $P(a_n)$ in J. Let z be a limit point of $\{z_n\}_{n=1}^{\infty}$. It follows that $z \in J \cap L$, and this contradicts the fact that $J \subset R^2 \setminus L$. Hence $M[u, v] \subset \text{Cl } D$.

Lemma 2. There exist a complementary domain D of L and a positive integer n such that $\text{Cl } D$ contains $P(a_n)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Assume the contrary. Then by Lemma 1,
(1) for each complementary domain D of L, there exists a positive integer n such that $D \cap P(a_n) = \emptyset$.

Let $\{Y_n\}_{n=1}^{\infty}$ be the elements of a countable base for M that intersect L. For each n, let $Z_n = \{z \in L \setminus \{a_1\}: Y_n \cap M \cup Z \setminus M \cap \{a_1, z\} = \emptyset\}$.

Note that $L \setminus \{a_1\} = \bigcup_{n=1}^{\infty} Z_n$. To see this let z be a point of $L \setminus \{a_1\}$. If $L \subset M \cup Z \setminus M \cap \{a_1, z\}$, then L is an arc and the closure of the complementary domain of L (being R^2) contains P, contrary to our assumption. Thus $L \not\subset M \cup Z \setminus M \cap \{a_1, z\}$.

Hence there exists an integer n such that $M \cup Z \setminus M \cap \{a_1, z\}$ contains an open subset U of L. Let Y and Z be disjoint disks in R^2 such that
(2) $L \cap \text{Int } Y \neq \emptyset$ and $L \cap \text{Int } Z \neq \emptyset$ and
(3) $M \cap Y \subset Y$ and $L \cap Z \subset U$.

Notation. For each component C of $P \setminus Y$ that misses a_1, let $\text{Dom } C$ denote the complementary domain of $C \cup Y$ that misses a_1.

Let \mathcal{M} be the collection of all components C of $P \setminus Y$ such that $a_1 \not\in C$ and $Z \cap \text{Dom } C \neq \emptyset$. Note that each element of \mathcal{M} is an arc segment with both endpoints in $\text{Bd } Y$.

For each element C of \mathcal{M},
(4) $U \cap \text{Dom } C = \emptyset$ and
(5) $C \cap \text{Int } Z \neq \emptyset$.

Statement (4) is true; for otherwise, since $U \subset \text{Cl } Z_a$, $M \setminus Y_a$ contains an arc A that runs from a_1 to $U \cap \text{Dom } C$, and $A \cup P$ contains a simple closed curve, violating the unique arcwise connectivity of M. Since $Z \cap \text{Dom } C \neq \emptyset$ and $L \cap \text{Int } Z$ is a nonempty subset of U, (5) follows immediately from (4).

Since Y and Z are disjoint, it follows from (2) that \mathcal{M} is infinite. By (5), for each positive integer n,
(6) $P(a_n)$ contains all but finitely many elements of \mathcal{M}.

For each element C of \mathcal{M},
(7) $\text{Dom } C$ contains at most finitely many elements of \mathcal{M} and
(8) only finitely many elements of \mathcal{M} separate a_1 from C in $R^2 \setminus Y$.

To verify (7) assume there exists an infinite subcollection \mathcal{N} of \mathcal{M} such that $\text{St } \mathcal{N} \subset \text{Dom } C$. By (5), each element of \mathcal{N} intersects Z. Hence by (6), there is a point t of L in $Z \cap \text{Cl } \text{St } \mathcal{N}$. By (4), $t \not\in \text{Dom } C$. Therefore $t \in C$.

Let J be an arc segment in $\text{Dom } C$ with endpoints in $C \setminus \{t\}$ such that the bounded complementary domain K of $C \cup J$ has the following properties. The point t belongs to $\text{Cl } K$ and U contains $K \cap L$.

Since infinitely many elements of \mathcal{N} intersect K, it follows from (1) and (6) that no complementary domain of L contains $K \cap \text{St } \mathcal{N}$. Therefore $K \cap L \neq \emptyset$. But since $K \subset \text{Dom } C$, this contradicts (4). Hence (7) is true.
To establish (8) assume the contrary. By (7), there exists a sequence \{C_n\}_{n=1}^\infty \subseteq 91L such that for each \(n \), \(\text{Dom} \, C_n \subseteq \text{Dom} \, C_{n+1} \). By (1), (4), (5), (6), and Lemma 1, for some \(n \), \(L \) separates \(C_1 \) from \(C_n \) in \(Z \). Let \(A \) be an arc segment in \(Z \) such that \(\text{Cl} \, A \) is an arc irreducible between \(C_1 \) and \(C_n \). Since \(C_1 \subseteq \text{Dom} \, C_n \), \(A \subseteq \text{Dom} \, C_n \). But since \(A \cap L \neq \emptyset \), this contradicts (4). Hence (8) is true.

Let \(\emptyset = \{ C \in 91L : \text{no element of 91L separates} \, a_i \, \text{from} \, C \, \text{in} \, R^2 \setminus Y \} \). Since 91L is infinite, it follows from (7) and (8) that \(\emptyset \) is infinite.

Next we define a pair \(p, q \) of points of \(P \cap \text{Int} \, Y \). We consider two cases.

Case 1.1. Suppose \(L \cap P \cap \text{Int} \, Y \neq \emptyset \). Define \(p \) to be a point of \(L \cap P \cap \text{Int} \, Y \), and let \(q \) be a point of \((P(p) \cap \text{Int} \, Y) \setminus \{ p \} \).

Case 1.2. Suppose \(L \cap P \cap \text{Int} \, Y = \emptyset \). Applying (1), we define \(p \) and \(q \) to be points of \(P \cap \text{Int} \, Y \) such that \(P(q) \) misses the \(p \)-component of \(R^2 \setminus L \).

An element \(M(u, v) \) of \(\emptyset \) in \(P(q) \), a point \(z \) of \(M(u, v) \cap \text{Int} \, Z \), and an arc segment \(I \) in \(\text{(Int} \, Z) \setminus \text{Cl} \, \text{Dom} \, M(u, v) \) exist such that

\[
\begin{align*}
(9) \, (\text{Cl} \, I) \cap (M[a_1, v] \cup \text{Bd} \, Z) &= \{ z \}, \\
(10) \, L \cap \text{Cl} \, I \neq \emptyset, \text{ and} \\
(11) \, \text{either} \, z \in L \, \text{or} \, P \cap \text{Cl} \, I = \{ z \}.
\end{align*}
\]

To verify this consider two cases.

Case 2.1. Suppose \(L \cap P(q) \cap \text{Int} \, Z \neq \emptyset \). Let \(z \) be a point of \(L \cap P(q) \cap \text{Int} \, Z \). Let \(M(u, v) \) be the element of 91L that contains \(z \). It follows from (4) that \(M(u, v) \in \emptyset \). Let \(I \) be an arc segment in \((\text{Int} \, Z) \setminus \text{Cl} \, \text{Dom} \, M(u, v) \) that satisfies (9). Since \(z \in L \), (10) and (11) hold.

Case 2.2. Suppose \(L \cap P(q) \cap \text{Int} \, Z = \emptyset \). Note that \((L \setminus P) \cap \text{Int} \, Z \neq \emptyset \). To see this assume otherwise. Since \(L \cap \text{Int} \, Z \neq \emptyset \) and \(L \cap P(q) \cap \text{Int} \, Z = \emptyset \), there exists a point \(a \) of \(M[a_1, q] \) in \(L \cap \text{Int} \, Z \). Let \(V \) be an open disk in \(Z \) such that \(a \in V \) and \(V \setminus M[a_1, q] \) has exactly two components. Since \(a \in L \), infinitely many elements of 91L intersect \(V \setminus M[a_1, q] \). But since both components of \(V \setminus M[a_1, q] \) are in \(R^2 \setminus L \), this contradicts (1) and (6).

Let \(t \) be a point of \((L \setminus P) \cap \text{Int} \, Z \). Let \(W \) be an open disk in \(Z \) that contains \(t \) and misses \(M[a_1, q] \). By (1), an element \(M(w, x) \) of 91L and a point \(r \) of \(W \cap M(w, x) \) exist such that \(W \cap P(x) \) misses the \(r \)-component \(G \) of \(R^2 \setminus L \).

Let \(T \) be an arc in \(W \) that runs from \(r \) to \(t \). Define \(s \) to be the first point of \(T \) that belongs to \(L \). Let \(I \) be the arc segment in \(T \) that precedes \(s \) with the property that \(\text{Cl} \, I \) is irreducible between \(s \) and \(M[q, x] \). Define \(z \) to be the endpoint of \(I \) opposite \(s \). Let \(M(u, v) \) be the element of 91L that contains \(z \). It follows from (4) that \(s \notin \text{Cl} \, \text{Dom} \, M(u, v) \). Since \(z \in G \), \(P \cap \text{Cl} \, I = \{ z \} \). Hence by (4), \(M(u, v) \in \emptyset \). Clearly (9), (10), and (11) hold.

Let \(J \) be a polygonal arc segment in

\[
Z \setminus (M[a_1, v] \cup \text{Dom} \, M(u, v) \cup \text{Cl} \, I)
\]
with endpoints \(b \) and \(b_0 \) in \(M(u, v) \) such that \(z \in M(b, b_0) \subset Z \).

Define \(K_0 \) to be the component of \(R^2 \setminus (J \cup M[b, b_0]) \) that contains \(I \). Note that \(K_0 \subset Z \).

The following statements and definitions (12\(_n \))—(21\(_n \)) will be used inductively.

By (7), (8), and (10), for \(n = 1 \), there exists an element \(M(w_n, x_n) \) of \(\emptyset \) in \(P(v) \) such that

\[
(12_n) \quad K_{n-1} \cap M(w_n, x_n) \neq \emptyset \text{ and }
\]

\[
(13_n) \quad \text{no element of } \emptyset \text{ in } M(b_{n-1}, w_n) \text{ intersects } K_{n-1}.
\]

For \(n = 1 \),

\[
(14_n) \quad H_n = M(b_{n-1}, x_n) \cap \text{Cl } K_{n-1},
\]

\[
(15_n) \quad \text{let } J_n \text{ be the component of } I \setminus M(p, x_n) \text{ whose closure contains } z,
\]

\[
(16_n) \quad \text{let } J' \text{ be the arc in Cl } J \text{ that is irreducible between } b \text{ and } M(w_n, x_n),
\]

and

\[
(17_n) \quad \text{let } b_n \text{ be the endpoint of } J_n \text{ that belongs to } M(w_n, x_n).
\]

Let \(J' \) be the arc in Cl \(J \) that is irreducible between \(b_0 \) and \(M(w_1, x_1) \). Since \(Y \cup \text{Dom } M(u, v) \) misses \(M(w_1, x_1) \cup \text{Cl } K_0 \), there exists an arc segment \(/' \) in \(Y \cup \text{Dom } M(u, v) \) from \(p \) to \(z \) such that \(\text{Cl } I_1 \) and \(\text{Cl } I' \) abut on \(M[b, b_0] \) from opposite sides with respect to the simple closed curve \(\Gamma \) in \(J_1 \cup J' \cup M(b, b_0) \cup M(w_1, x_1) \) [13, Theorem 32, p. 181]. Since \(\Gamma \cap (I_1 \cup I' \cup \{ p \}) = \emptyset, J_1 \cup J' \cup M(u, x_1) \) separates \(p \) from \(I_1 \) in \(R^2 \). Since \(J_1 \cap J' = \emptyset \), either \(J_1 \cup M(u, x_1) \) or \(J' \cup M(u, x_1) \) separates \(p \) from \(I_1 \) in \(R^2 \) [13, Theorem 20, p. 173]. For convenience we assume that \(J_1 \cup M(u, x_1) \) separates \(p \) from \(I_1 \) in \(R^2 \).

For \(n = 1 \),

\[
(18_n) \quad \text{let } K_n \text{ be the complementary domain of } J_n \cup M(b, b_n) \text{ that contains } I_n.
\]

Clearly, for \(n = 1 \),

\[
(19_n) \quad p \notin K_n.
\]

By (10) and (11), for \(n = 1 \),

\[
(20_n) \quad L \cap (K_n \cup \{ z \}) \neq \emptyset.
\]

Next we show that for \(n = 1 \),

\[
(21_n) \quad K_n \cap Y \cap P(b_n) = \emptyset.
\]

Let \(A \) be an arc in \(J_1 \) such that \(A \cap M(p, x_1) = \{ b \} \). Since \(M(u, v) \) and \(M(w_1, x_1) \) belong to \(\emptyset \), \(M(u, v) \) and \(M(w_1, x_1) \) are not separated in \(R^2 \setminus Y \) by an element of \(\emptyset \). Hence there exists a polygonal arc segment \(B \) in \(R^2 \setminus (Y \cup M(p, x_1)) \) such that \(A \cup \{ b_1 \} \subset \text{Cl } B \). Let \(I'_1 \) be an arc in \((\text{Cl } I_1) \setminus B \) that contains \(z \). Let \(K \) be the complementary domain of \(B \cup M[b, b_1] \) that intersects \(I'_1 \).

Note that

\[
(22) \quad K_1 \cap Y \subset K.
\]

To see this let \(y \) be a point of \(K_1 \cap Y \). We must show that \(y \in K \). Let \(F \) be a
polygonal arc in K_1 from y to I'_1 such that $B \cap F$ is finite and F crosses B at each point of $B \cap F$. Clearly $y \in K$ if $B \cap F = \emptyset$, so we assume $B \cap F \neq \emptyset$.

Since $I'_1 \cup Y \cup M(z, v)$ misses $B \cup J_1$, one complementary domain of $B \cup J_1$ contains $I'_1 \cup \{y\}$. Since $F \cap J_1 = \emptyset$, it follows that F crosses B an even number of times. Therefore F crosses $B \cup M(b, b_1)$ an even number of times. Thus $y \in K$. Hence (22) is true.

It follows from (22) that (211) can be established by proving

(23) $K \cap Y \cap P(b_1) = \emptyset$.

To verify (23) first note that since $p \notin K_1$ and $M[p, b] \cap (J_1 \cup M(b, b_1)) = \emptyset$, I'_1 and $M[p, b]$ abut on $A \cup M(b, v)$ from opposite sides with respect to a simple closed curve in $J_1 \cup M(b, b_1)$. Hence I'_1 and $M[p, b]$ abut on $A \cup M(b, v)$ from opposite sides with respect to $B \cup M(b, b_1)$ [13, Theorem 32, p. 181]. Since $M[p, b] \cap (B \cup M[b, b_1]) = \emptyset$, it follows that $p \notin K$. Let Q be an arc from p to q in $\text{Int } Y$. Either $p \in L$ (Case 1.1) or $L \cap P \cap \text{Int } Y = \emptyset$ and $P(q)$ misses the p-component of $R^2 \setminus L$ (Case 1.2). Hence the p-component of $Q \setminus \text{Cl } K$ contains a point r of L. Let G be an open set in $Y \setminus \text{Cl } K$ that contains r.

Now suppose that (23) is false. Since $r \in L$, there exists an arc $M[s, t]$ in $P(b_1)$ such that $s \in K \cap Y$ and $t \in G$.

Let $M(s', t')$ be an arc segment in $M[s, t] \setminus Y$ such that $s' \in K \cap \text{Bd } Y$ and $t' \in (\text{Bd } Y) \setminus K$. A component of $(B \cup M[b, b_1]) \setminus \text{Int } Y$ separates s' from t' in $R^2 \setminus \text{Int } Y$ [13, Theorem 27, p. 177]. Since $B \cap M(b, b_1) = \emptyset$ and $M(s', t') \cap (Y \cup M(b, b_1)) = \emptyset$, it follows that $B \cup M[b, v] \cup M[w_1, b_1]$ separates s' from t' in $R^2 \setminus \text{Int } Y$. Hence (v, w_1) separates s' from t' in $\text{Bd } Y$. Thus $M(s', t')$ is an element of K that separates $M(u, v)$ from $M(w_1, x_1)$ in $R^2 \setminus Y$ [13, Theorem 30, p. 158], and this contradicts the fact that $M(u, v)$ and $M(w_1, x_1)$ belong to \emptyset. Hence (23) is true. Consequently (211) is true.

Proceeding inductively, for each integer $n > 1$, we define $M(w_n, x_n)$, H_n, I_n, J_n, b_n, and K_n satisfying (12n) – (21n). For $n > 1$, (12n) and (13n) follow from (7), (8), and (20n–1). To verify (19n) for $n > 1$, note that by (19n–1), there exists an arc A in J_n such that $M[p, b]$ and $\text{Cl } I_n$ abut on $A \cup M[b, v]$ from opposite sides with respect to a simple closed curve in $J_n \cup M(b, b_n)$ [13, Theorem 32, p. 181]. The arguments given for (20n) and (21n) when $n = 1$ hold when $n > 1$.

Since $Y \cap Z = \emptyset$, for each positive integer m,

(24) there exists an integer n such that $a_m \notin P(x_m)$.

Let H be the limit superior of $\{H_n\}_{n=1}^{\infty}$. By (24), $H \subset L$.

Since $K_0 \cap Y = \emptyset$, it follows from (21n) that

(25) $Y \cup \bigcup_{n=1}^{\infty} H_n = \emptyset$.

Since $(J_n)_{n=1}^{\infty}$ is a nested sequence of arcs, $(b_n)_{n=1}^{\infty}$ converges to a point c of $H \cap J_1$. For each positive integer n, let B_n be the polygonal arc in J_n with endpoints c and b_n.
Since \(J_1 \cap M[a_1, u] = \emptyset \), it follows from (13\(_n\)) and (16\(_n\)) that \((J_1 \setminus B_i) \cap \bigcup_{n=1}^{\infty} H_n = \emptyset\). For each positive integer \(n \), every component of \(H_{n+1} \) intersects \(B_n \). Hence \(H \) is connected.

For each component \(C \) of \(P(u) \setminus Y \),
\[
(26) \quad H \cap \text{Int}(Y \cup \text{Dom } C) = \emptyset.
\]
To see this let \(x \) be the last point of \(\text{Cl } C \) with respect to the ordering of \(P \). By (13\(_n\)) and (16\(_n\)), \(c \notin M(b, x) \). Let \(i \) be a positive integer such that \(B_i \cap M(b, x) = \emptyset \). Since \(c \in U \), it follows from (4) that \(B_i \cap \text{Dom } C = \emptyset \). Since \(P \) does not contain a simple closed curve, \(C \cap \bigcup_{n=1}^{\infty} H_n = \emptyset \). Since \(B_i \) intersects each component of \(\bigcup_{n=1}^{\infty} H_n \), it follows from (25) that \(\bigcup_{n=1}^{\infty} H_n \) misses \(Y \cup \text{Dom } C \) [13, Theorem 28, p. 156]. Hence (26) is established.

Next we prove that Knaster's chainable indecomposable continuum with one endpoint [11, Example 1, p. 204] is a continuous image of \(H \). We use a result [8, Theorem 1] that was derived from an argument of D. P. Bellamy [3].

According to Theorem 1 of [8], \(H \) can be mapped continuously onto Knaster's continuum if there exists a sequence \(\{G_n\}_{n=1}^{\infty} \) of nonempty open sets in \(H \) such that \((\text{Cl } G_1) \cap \text{Cl } G_2 = \emptyset \) and for each \(n \),
\[
(27) \quad G_{2n+1} \cup G_{2n+2} \subset G_{2n-1}
\]
and
\[
(28) \quad \text{there exists a separation } E_n \cup F_n \text{ of } M \setminus G_{2n} \text{ such that } G_{2n+1} \subset E_n \text{ and } G_{2n+2} \subset F_n.
\]
To establish the existence of \(\{G_n\}_{n=1}^{\infty} \), order \(B_1 \) so that \(b_1 \) is its first point. Let \(c_1 \) be the first point of \(B_1 \cap L \) with respect to the ordering of \(B_1 \). By (1) and (24), \(c_1 \neq c \).

If \(b_1 \neq c_1 \), define \(C_1 \) to be the arc in \(B_1 \) from \(b_1 \) to \(c_1 \). If \(b_1 = c_1 \), let \(C_1 = \{c_1\} \).

Note that
\[
(29) \quad c_1 \in H.
\]
To see this consider two cases.

Case 3.1. Suppose \(c_1 \in P(z) \). Let \(m \) be an integer such that \(J_m \cap M[z, c_1] = \emptyset \). For each integer \(n > m \), \(M[z, c_1] \subset \text{Cl } K_n \). It follows from (7) that \(c_1 \in H \).

Case 3.2. Suppose \(c_1 \notin P(z) \). For some positive integer \(n \), \(C_1 \cap P(a_n) = \emptyset \); for otherwise, by (1), \(L \cap (C_1 \setminus \{c_1\}) = \emptyset \), and this contradicts the definition of \(c_1 \). Let \(d \) be the last point of \(C_1 \cap P \) that precedes \(c_1 \) with respect to the ordering of \(B_1 \). Since \(C_1 \cap M[a_1, z] = \emptyset \), \(d \in P(z) \).

Let \(\Delta \) be the arc in \(C_1 \) from \(d \) to \(c_1 \). Let \(M(w, x) \) be the \(d \)-component of \(P \setminus Y \). Since \(c_1 \in U \) and \(\Delta \cap P = \{d\} \), it follows from (4) that \(M(w, x) \in \emptyset \).

Let \(A \) be an arc in \(J_1 \setminus \Delta \) such that \(A \cap M(p, x) = \{b\} \). Observe that
\[
(30) \quad A \text{ and } \Delta \text{ abut on } M[u, x] \text{ from the same side.}
\]
To verify (30) first note that, by (4), \(\Delta \cap \text{Dom } M(w, x) = \emptyset \). Hence there exists a polygonal arc segment \(B \) in \(R^2 \setminus (Y \cup M(p, x)) \) such that \(A \cup \Delta \subset \text{Cl } B \). Let \(F \) be an arc in \(R^2 \setminus M(p, x) \) from \(p \) to \(x \) such that \(B \cap F \) is finite.
and F crosses B at each point of $B \cap F$.

Suppose (30) is false. Then F crosses B an odd number of times. It follows that p and x are separated in R^2 by $B \cup M[b, d]$. By the argument for (23), there is a component of $P(z) \setminus Y$ that separates $M(u, v)$ from $M(w, x)$ in $R^2 \setminus Y$, and this contradicts the fact that $M(u, v)$ and $M(w, x)$ belong to \emptyset. Hence (30) is true.

Let i be a positive integer such that $J_i \cap M(b, x) = \emptyset$. Let E be an arc in $C_l I_i$ such that $E \cap M[u, x] = \{z\}$. Since E and A abut on $M[u, x]$ from the same side, it follows from (30) that E and Δ abut on $M[b, x]$ from the same side. Since $\Delta \cap P = \{d\}$, for each integer $j > i$, $c_i \in K_j$.

Let V be a disk in K_j such that $c_i \in \text{Int} V$. Since $c_i \in L$, $V \cap P(b_i) \neq \emptyset$. For each integer $j > i$, since $c_i \in K_j$, if $V \cap M(b_j, b_j) = \emptyset$, then $V \subset K_j$. Hence for some $j > i$, H_j contains the first point of $V \cap P(b_i)$ with respect to the ordering of P (recall (14)). It follows that $c_i \in H$. Thus (29) is established.

Let D_1 and D_2 be open disks in R^2 such that $B_1 \subset D_1$, $C_l I_1 \subset D_2$, and $(C_l D_1) \cap C_l D_2 = \emptyset$. Let $i_1 = 1$.

Let j_1 be an integer greater than 1 such that
\[(31) C_1 \cap P(w_j) = \emptyset \quad \text{and} \quad J_i \cap M[z, b_j] = \emptyset.\]
By (7), (8), (10), and (11), there exists an integer $i_2 > j_1$ such that $D_2 \cap K_1 \cap M(w_i, x_i) \neq \emptyset$.

Let Λ be an arc segment in
\[((Bd Y) \cap \text{Cl Dom } M(w_i, x_i)) \setminus M[p, x_i]\]
that has x_i as an endpoint. Let Λ_1 be a polygonal arc segment in $\text{Dom } M(w_i, x_i) \setminus M[b, b_i]$ from a point e of Λ to $D_2 \cap K_1$ such that $B_1 \cap \Lambda_1$ is finite and Λ_1 crosses B_1 at each point of $B_1 \cap \Lambda_1$.

By (21), $e \in K_1$.

Let Π_1 be the arc in B_1 from c_1 to c. Since Λ_1 misses $M[b, b_i] \cup (J_i \setminus \Pi_1)$, it follows that Λ_1 crosses Π_1 an odd number of times.

By (26), there exists a simple closed curve Σ_1 in
\[Y \cup \Lambda_1 \cup D_2 \cup \text{Dom } M(u, v)\]
such that $\Lambda_1 \subset \Sigma_1$, $H \cap \Sigma_1 \subset D_2$, and $\Pi_1 \cap \Sigma_1 \subset \Lambda_1$. Since Π_1 crosses Σ_1 an odd number of times, Σ_1 separates c from c_1 in R^2.

Define Ω_1 to be the c-component of $R^2 \setminus \Sigma_1$. Note that $B_1 \subset \Omega_1 \subset R^2 \setminus C_1$.

Let $E_1 = \Omega_1 \cap (H \setminus D_2)$ and $F_1 = H \setminus (D_2 \cup E_1)$.

For $i = 1$ and 2, let $G_i = D_i \cap H$. Note that $E_1 \cup F_1$ is a separation of $H \setminus G_2$.

Let c_2 be the first point of $L \cap B_i$ with respect to the ordering of B_1. By (1) and (24), $c_2 \neq c$.

If $b_i \neq c_2$, define C_2 to be the arc in B_1 from b_i to c_2. If $b_i = c_2$, let $C_2 = \{c_2\}$. By the argument for (29), $c_2 \in H$.
Let D_3 and D_4 be open disks such that $B_i \subset D_3 \subset D_1 \cap \Omega_1$ and $C_1 \subset D_4 \subset D_1 \setminus \Omega_1$. Note that $D_3 \cap H \subset E_1$ and $D_4 \cap H \subset E_1$.

It follows from (31) and the arguments for Cases 3.1 and 3.2 that $c_1 \in \text{Cl } K_i$
for each integer $i > i_2$.

Proceeding inductively, we let n be an integer greater than 1. We assume that for each integer m $(1 < m < n)$, an integer i_m, a point c_m of $H \setminus \{c\}$, a subset C_m of B_1, and disjoint open disks D_{2m-1}, D_{2m} have been defined such that

(32m) c_m is the first point of $L \cap B_m$ with respect to the ordering of B_1,
(33m) C_m is a minimal connected set containing $\{b_m, c_m\}$,
(34m) $B_m \subset D_{2m-1}$,
(35m) $C_{m-1} \subset D_{2m}$, and
(36m) $c_{m-1} \in \text{Cl } K_i$ for each integer $i \geq i_m$.

For each integer i $(2 < i < 2n)$, let $G_i = D_i \cap H$. We assume that for each positive integer i less than n, (27_i) and (28_i) are satisfied.

Let j_n be an integer greater than i_n such that $C_n \cap P(w_j) = \emptyset$ and $J_{j_n} \cap M[z, b_{j_n}] = \emptyset$. Define i_{n+1} to be an integer greater than j_n such that

$$D_{2n} \cap K_i \cap M(w_{i_n+1}, x_{i_n+1}) \neq \emptyset.$$

Let Π_n be the arc in B_1 from c_n to c. Define Λ_n to be a polygonal arc segment in $\text{Dom } M(w_{i_n+1}, x_{i_n+1})$ from $(\text{Bd } Y) \setminus H$ to $D_{2n} \cap K_i$ that crosses Π_n an odd number of times.

Let Σ_n be a simple closed curve in

$$Y \cup \Lambda_n \cup D_{2n} \cup \text{Dom } M(w_{i_n+1}, x_{i_n+1})$$
such that $\Lambda_n \subset \Sigma_n$, $H \cap \Sigma_n \subset D_{2n}$, and $\Pi_n \cap \Sigma_n \subset \Lambda_n$. Since Π_n crosses Σ_n an odd number of times, Σ_n separates c from c_n in \mathbb{R}^2.

Define Ω_n to be the c-component of $\mathbb{R}^2 \setminus \Sigma_n$. Let $E_n = \Omega_n \cap (H \setminus D_{2n})$ and $F_n = H \setminus (D_{2n} \cup E_n)$.

To complete the inductive step define c_{n+1}, C_{n+1}, D_{2n+1}, D_{2n+2} satisfying $(32_{n+1}) - (36_{n+1})$, (27_n), and (28_n) when $G_{2n+1} = D_{2n+1} \cap H$ and $G_{2n+2} = D_{2n+2} \cap H$. It follows from the existence of $\{G_n\}_{n=1}^\infty$ that Knaster's continuum is a continuous image of H [8, Theorem 1].

Since Knaster's continuum is indecomposable, H contains an indecomposable continuum Φ [11, Theorem 4, p. 208]. According to a theorem of J. Krasinkiewicz [10, Theorem 3.1], Φ has a composant Ψ with the property that

(37) no arc segment in $\mathbb{R}^2 \setminus \Psi$ has an endpoint in Ψ.

Note that

(38) $\Psi \cap P(u) = \emptyset$.

To see this assume the contrary. Let t be a point of $\Psi \cap P(u)$. Since $\Psi \subset H \subset M \setminus \text{Int } Y$, it follows from (37) that $t \notin Y$. Let C be the t-component of $P(u) \setminus Y$. By (37), $\Psi \cap \text{Dom } C \neq \emptyset$, and this contradicts (26). Hence (38) is true.
Since M is arcwise connected, there exists an arc A in M that intersects both Ψ and $M \setminus \Psi$. By (37), there exist points r and s of $A \cap \Psi$ such that $M(r, s) \not\subset \Psi$. Let B be a continuum in Ψ that contains $\{r, s\}$. Note that $A \cup B$ separates \mathbb{R}^2 [13, Theorem 22, p. 175]. By (37), each component of $\mathbb{R}^2 \setminus (A \cup B)$ intersects Ψ. Since $\Psi \subset L$, it follows from (38) that $A \cup \varphi$ contains a simple closed curve, and this violates the unique arcwise connectivity of M. This contradiction completes the proof of Lemma 2. □

Lemma 3. For each positive integer n, $P(a_n)$ intersects $M \setminus L$.

Proof. Suppose $P(a_n) \subset L$ for some positive integer n. Assume without loss of generality that $P \subset L$. It follows from the proof of Lemma 2 (with Cases 1.2, 2.2, and 3.2 deleted) that this assumption involves a contradiction. □

We assume without loss of generality that D (in Lemma 2) is the unbounded complementary domain of L and $P \subset \text{Cl} \ D$. We also assume without loss of generality that $a_1 \in D$ (Lemma 3).

Let L' be a subcontinuum of L. Define D' to be the unbounded complementary domain of L'. Note that $D \subset D'$.

Let X be the nonseparating plane continuum $\mathbb{R}^2 \setminus D'$. Since M is arcwise connected, there is an arc segment S in $M \cap D'$ with an endpoint s in X. Since M does not contain a simple closed curve, we can assume without loss of generality that $P \cap \text{Cl} \ S = \emptyset$.

Sieklucki [15, Lemma 5.5, p. 267] proved that X has the following properties. There exists a sequence $\{Q_n\}_{n=1}^\infty$ of disks in \mathbb{R}^2 such that $X = \cap_{n=1}^\infty Q_n$ and for each n,

(i) $Q_{n+1} \subset \text{Int} \ Q_n$,

(ii) the boundary B_n of Q_n is a polygonal simple closed curve with consecutive vertices $b_n^1, b_n^2, \ldots, b_n^{\mu_n}, b_n^{\mu_n+1} = b_n^1$, and

(iii) for $j = 1, 2, \ldots, \mu_n$, the interval in B_n from b_n^j to b_n^{j+1} has diameter less than 2^{-n}.

For every b_n^j ($n = 1, 2, \ldots$ and $j = 1, 2, \ldots, \mu_n$) there exists a vertex $b_{n+1}^{s(j)}$ such that

(iv) the interval N_n^j in \mathbb{R}^2 from b_n^j to $b_{n+1}^{s(j)}$ has diameter less than 2^{-n},

(v) $N_n^j \setminus \{b_n^j, b_{n+1}^{s(j)}\} \subset (\text{Int} \ Q_n) \setminus Q_{n+1}$, and

(vi) $N_n^j \cap N_n^k = \emptyset$ for each integer $k \neq j$ ($1 \leq k \leq \mu_n$).

Let $N = \cup_{n=1}^\infty \cup_{j=1}^{\mu_n} N_n^j$. Note that each component of N is a half-open arc in $\mathbb{R}^2 \setminus X$ with an endpoint in X.

Let m be a given positive integer. Define N_m to be the union of all components of N that intersect B_m. Let O_m be a subset of N_m that is maximal with respect to the property that each component of O_m is a component of N_m and each pair of components of O_m with a common endpoint is separated in $Q_m \setminus X$ by another pair of components of O_m.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Let $c_m^1, c_m^2, \ldots, c_m^x, c_m^{x+1} = c_m^1$ denote the consecutive vertices of B_m that belong to O_m. Since X is not degenerate, we can assume without loss of generality that $\xi_m > 3$. Assume without loss of generality that $B_m \cap S \neq \emptyset$.

Let n be an integer greater than m. Define E to be the closure of a component of $Q_n \setminus (O_m \cup X)$. We call E an (m, n)-link on X. The polygonal arc $B_n \cap E$ is called the bottom of E. The two components of $E \cap O_m$ are called the sides of E. Note that the sides of E are half-open arcs in $Q_n \setminus X$ with distinct endpoints in X. The diameter of the union of the sides of E is less than 2^{3-m}.

For $j = 1, 2, \ldots, \xi_m$, let E_j be the (m, n)-link whose sides are contained in the components of O_m that intersect $\{c_m^j, c_m^{j+1}\}$.

Suppose there exist two (m, n)-links E and F that have a common side such that $Q_n \cap S \subset E \cup F$ and $\text{Cl} S$ misses the closure of each uncommon side of E and F. Change the indexing of the (m, n)-links (if necessary) so that $E = E_1$, $F = E_{\xi_m}$, and each pair of consecutive links has a common side.

Define F_1 to be the closure of the component of $(E_1 \cup E_{\xi_m}) \setminus (S \cup X)$ that contains a side of E_2. Let $F_j = E_j$ for $1 < j < \xi_m$. Define F_{ξ_m} to be the closure of the component of $(E_1 \cup E_{\xi_m}) \setminus (S \cup X)$ that contains a side of E_{ξ_m-1}. We call $\mathcal{F} = \{F_j : 1 < j < \xi_m\}$ an m-chain on (X, S). We call F_1 and F_{ξ_m} the end links of \mathcal{F}. Each F_j ($1 < j < \xi_m$) is called an interior link of \mathcal{F}. Let T be the arc in $\text{Cl} S$ that is irreducible between s and B_n. The half-open arc $T \setminus \{s\}$ is called the common side of F_1 and F_{ξ_m}.

Since S is an arc segment, for each positive integer m, there exists an m-chain on (X, S).

Lemma 4. For each positive integer i, there exists an m-chain \mathcal{F} on (X, S) such that $m > i$ and no pair of consecutive links of \mathcal{F} contains $\text{Bd} X$ in its union.

Proof. Let m and m' be integers such that $0 < m < m'$. Suppose \mathcal{F} is an m-chain on (X, S) and U is the union of a pair of consecutive links of an m'-chain on (X, S). Then the union of some pair of consecutive links of \mathcal{F} contains $U \cap \text{Bd} X$. Hence it is sufficient to show that there exists an m-chain \mathcal{F} on (X, S) such that no pair of consecutive links of \mathcal{F} contains $\text{Bd} X$ in its union.

Assume that for each positive integer m, every m-chain on (X, S) has a pair of consecutive links whose union contains $\text{Bd} X$. Then for each m, there exist a positive number ϵ_m, a pair of consecutive links E_m, F_m of an m-chain on (X, S), and an arc segment A_m in $B_m \setminus O_m \cup S$ such that $\{\epsilon_m\}_{m=1}^\infty$ converges to zero, $\text{Bd} X \subset E_m \cup F_m$, A_m has diameter less than ϵ_m and contains the uncommon sides of E_m and F_m, and $A_m \cup X$ separates $(\text{Int} E_m) \setminus X$ from $R^2 \setminus Q_m$ in R^2.

For each positive integer m, let x_m and y_m be the endpoints of A_m. Note
that for each m, $\{x_m, y_m\} \subseteq \text{Bd } X$. For each m, let W_m be the complementary domain of $A_m \cup X$ whose closure contains $E_m \cup F_m$. Let y be a limit point of $\{y_m\}_{m=1}^{\infty}$.

The continuum $\text{Bd } X$ is nonaposyndetic at y with respect to each point of $(\text{Bd } X) \setminus \{y\}$ [9]. For assume otherwise. Then a continuum Y, an open disk G, and a point z of $(\text{Bd } X) \setminus \text{Cl } G$ exist such that

$$y \in G \cap \text{Bd } X \subset Y \subset (\text{Bd } X) \setminus \{z\}.$$

Let Z be an open disk such that $z \in Z \subset R^2 \setminus (G \cup Y)$.

Let i be an integer such that $B_i \cap Z \neq \emptyset$. Define m to be an integer greater than i such that $A_m \subset G$. Let p be a point of $Z \cap (Q_i \setminus Q_m)$. Let q be a point of $W_m \cap Z$.

There exists a polygonal arc I in $Q_i \setminus X$ from p to q such that $A_m \cap I$ is finite and I crosses A_m at each point of $A_m \cap I$. Since A_m separates p from q in $Q_i \setminus X$, I crosses A_m an odd number of times. It follows that $I \cup Z$ contains a simple closed curve that separates x_m from y_m in R^2. Since $\{x_m, y_m\} \subset Y \subset R^2 \setminus (I \cup Z)$, this violates the connectivity of Y. Hence $\text{Bd } X$ is nonaposyndetic at y with respect to each point of $(\text{Bd } X) \setminus \{y\}$.

According to a theorem of H. E. Schlais [14, Theorem 9], [8, Theorem 4], $\text{Bd } X$ contains an indecomposable continuum Φ. Let Ψ be a composant of Φ with the property that no arc segment in $R^2 \setminus \Psi$ has an endpoint in Φ. Let n be an arc in Ψ that is irreducible between $M[a, v]$. Since $M[a, v] \cap \text{Int } F = \emptyset$, and each complementary domain of $J \cup M[a, v]$ intersects Ψ, for each positive integer n, $J \cap P(a_n) \neq \emptyset$. Thus $J \cap L \neq \emptyset$, and this contradicts the definition of J. Hence $\Psi \cap \text{P } = \emptyset$.

From the last paragraph in the proof of Lemma 2, we see that the existence of Ψ implies that M contains a simple closed curve. This contradiction completes the proof of Lemma 4.

Lemma 5. Suppose F is an element of an m-chain \mathcal{F}, u is a point of $(\text{P } \cap \text{Int } F) \setminus X$, v is a point of $P \setminus F$, and $\text{St } \mathcal{F}$ contains $M[u, v]$. Then $M[u, v]$ intersects the closure of a side of F.

Proof. Assume $M[u, v]$ misses the closure of each side of F. By Lemma 3, there is a point y of $P(v)$ in D. Let x be a point of $X \cap M[u, v] \cap \text{Bd } F$ such that every arc in $M[u, x]$ from $P \setminus X$ to x intersects $\text{Int } F$, and every arc in $M[x, y]$ from x to $P \setminus X$ intersects $P \setminus F$. Let J be an arc in D that is irreducible between $M[a, x]$ and $M[x, y]$.

The continuum $X \cap \text{Bd } F$ straddles every arc in P that contains x and has both endpoints in D. Consequently each complementary domain of $J \cup M[a, y]$ intersects $X \cap \text{Bd } F$. Since $M[a, y] \cap P(y) = \emptyset$, it follows that
$J \cap L \neq \emptyset$, and this contradicts the definition of J. Hence $M[u, v]$ intersects the closure of a side of F. \hfill \Box

In the remaining part of this section we assume $L = L'$. Hence $D = D'$ and L is the boundary of the nonseparating plane continuum X.

Let $\mathcal{F} = \{F_j: 1 < j < \xi_m\}$ be an m-chain on (X, S). Let \mathcal{G} be the set of all elements F_j of \mathcal{F} such that for each point u of P, $P(u)$ intersects $(\text{Int } F_j) \setminus X$. It follows from Lemma 3 that \mathcal{G} is not empty. Let F_i and F_k be the first and last links, respectively, of \mathcal{F} that belong to \mathcal{G}.

Lemma 6. Suppose B is an arc segment in $F_j \setminus (X \setminus F_l) (l < j < k)$ that has an endpoint in X. Then there exists a point u of P such that each arc in $P(u)$ that intersects both $(\text{Int } F_j) \setminus X$ and $(\text{Int } F_k) \setminus X$ also intersects B.

Proof. Let \mathcal{K} be an m-chain on (X, S) such that B intersects the bottom of a link of \mathcal{K}. Define u to be a point of P such that $P(u) \subset (\text{St } \mathcal{K}) \setminus ((\text{Cl } B) \setminus B)$.

Suppose there is an arc $M[v, w]$ in $P(u) \setminus B$ that intersects both $(\text{Int } F_j) \setminus X$ and $(\text{Int } F_k) \setminus X$. Assume without loss of generality that $v \in (\text{Int } F_i) \setminus X$ and $w \in (\text{Int } F_k) \setminus X$.

Let V be the t-component of $(\text{St } \mathcal{K}) \setminus (B \cup S \cup X)$. Note that V misses F_k and contains $(\text{St } \mathcal{K}) \cap ((\text{Int } F_j) \setminus X)$. Since $M[v, w] \cap \text{Cl}(B \cup S) = \emptyset$, the continuum $X \cap \text{Bd } V$ straddles each subarc of $M[v, w]$ that has one endpoint in V and the other endpoint in $M \setminus \text{Cl } V$.

Since $F_i \in \mathcal{G}$, there is a point z of $P(w)$ in $(\text{Int } F_i) \setminus X$. Let J be an arc in V that is irreducible between $M[v, w]$ and $M[w, z]$. Each complementary domain of $J \cup M[v, z]$ intersects $X \cap \text{Bd } V$. Since $M[v, z] \cap P(z) = \emptyset$, it follows that $J \cap L \neq \emptyset$, and this contradicts the definition of J. Hence each arc in $P(u)$ that intersects $(\text{Int } F_i) \setminus X$ and $(\text{Int } F_k) \setminus X$ intersects B. \hfill \Box

It follows from Lemma 6 that \mathcal{G} is the subchain $\{F_j: i < j < k\}$ of \mathcal{F}.

Definition. Suppose K is an arcwise connected subset of M that is contained in $(\text{St } \mathcal{G}) \setminus \text{Bd}(X \cup \text{St } \mathcal{F})$ and intersects $\text{Int } F_i$ and $\text{Int } F_k$. Then K is a *trace* of \mathcal{G} if for each arc A in K, there exists a function g of A into \mathcal{G} with the following properties:

1. For each point a of A, $a \in g(a)$.
2. If a and b are points of A and $g(a) \neq g(b)$, then $M[a, b]$ intersects a side of $g(a)$ and the interior of each link of \mathcal{G} between $g(a)$ and $g(b)$ (with respect to the index ordering of \mathcal{G}).

Definition. An arcwise connected set K agrees with \mathcal{G} if K is a trace of \mathcal{G}, $\mathcal{G} \setminus \{F_i\}$, $\mathcal{G} \setminus \{F_k\}$, or $\mathcal{G} \setminus \{F_i, F_k\}$.

Lemma 7. There exists a point u of $P \cap \text{Int } F_i$ such that $P(u)$ is a trace of \mathcal{G}.

Proof. Let $W = \{x \in X: x$ is an endpoint of a side of a link of $\mathcal{G}\}$. Define u to be a point of $P \cap ((\text{Int } F_i) \setminus X)$ such that $P(u)$ is contained in $\text{St } \mathcal{F}$ and
misses $W \cup \text{Bd}(X \cup \text{St } F)$ and $\bigcup \{(\text{Int } F_j) \setminus X: 1 \leq j < i \text{ or } k < j < \xi_m\}$.

Using Lemma 5, we define a function g^* of $P(u)$ onto \mathcal{G} such that
(i) $v \in g^*(v)$ for each point v of $P(u)$ and
(ii) if v and w are points of $P(u)$ and $g^*(v) \neq g^*(w)$, then $M[v, w]$ intersects a side of $g^*(v)$ and the interior of each link of \mathcal{G} between $g^*(v)$ and $g^*(w)$.

By considering the restriction of g^* to each arc in $P(u)$, we see that $P(u)$ is a trace of \mathcal{G}.

3. Principal result.

Theorem. If M is a uniquely arcwise connected plane continuum, then M has the fixed-point property.

Proof. Assume there exists a continuous function f of M into M that moves each point of M. Let ϵ be a positive number such that
(1) $\rho(z, f(z)) > \epsilon$ for each point z of M.

According to Borsuk [5], there exists a sequence $\{a_n\}_{n=1}^{\infty}$ of points of M such that for each n,
(2) $\rho(a_n, a_{n+1}) = \epsilon/3$ [5, p. 19, (4), n],
(3) if $z \in M(a_n, a_{n+1})$, then $\rho(a_n, z) < \epsilon/3$ [5, p. 19, (5), n],
(4) $M[a_1, a_n] \cap M[a_n, a_{n+1}] = \{a_n\}$ for $n > 1$ [5, p. 19, (11)], and
(5) $a_n, a_{n+1} \subset M[a_1, f(a_n)]$ [5, p. 19, (7), (13)].

For each positive integer n, let ψ_n be a homeomorphism of the half-open real line interval $[n, n + 1)$ onto $M[a_n, a_{n+1})$. For each point x of $[1, + \infty)$, let $\psi(x) = \psi_n(x)$ if $n < x < n + 1$.

Let $P = \bigcup_{n=2}^{\infty} M[a_1, a_n]$. It follows from (4) that ψ is a one-to-one continuous function of $[1, + \infty)$ onto P.

The function ψ determines a linear ordering \prec of P with a_1 as the first point. As in §2, for each point u of P, we let $P(u)$ denote $\{v \in P: u = v \text{ or } u \prec v\}$.

For each point u of P,
(6) $u \in M[a_1, f(u)]$.
To see this assume $u \notin M[a_1, f(u)]$. Suppose $u \in M[a_n, a_{n+1})$. Since M does not contain a simple closed curve, $a_{n+1} \notin M[a_1, f(u)]$. By (1), (2), and (3), $a_{n+1} \notin f[M[u, a_{n+1})]$. Thus $M[a_1, f(u)] \cup f[M[u, a_{n+1}]]$ misses a_{n+1} and contains an arc that runs from a_1 to $f(a_{n+1})$, and this contradicts (5). Hence (6) holds.

By (2), $P \not\subset M[a_1, f(a_1)]$. Since M does not contain a simple closed curve, there exists a point a of P such that $P(a) \cap M[a_1, f(a_1)] = \{a\}$.

Next we prove that
(7) $a \in f[M[a_1, a]]$.

Statement (7) is obviously true if $f(a_1) = a$, so we assume $f(a_1) \neq a$. Suppose $a \in M[a_n, a_{n+1})$. By (5), $a_2 \in M[a_1, f(a_1)]$. Hence $M[a_1, a_2] \subset$
$M[a_1, f(a_1)]$ and $n > 1$. Note that $a_{n+1} \notin M[a_1, f(a_1)]$ and $f(a_1) \notin M[a_1, a_{n+1}]$. By (5), $a_{n+1} \in M[a_1, f(a_n)]$. Since M does not contain a simple closed curve, it follows that $M[a, f(a_n)] \cap M[a, f(a_1)] = \{a\}$.

Suppose (7) is false. Then $a \notin f[M[a_1, a_n]]$. Consequently

$$M[a, f(a_1)] \cup M[a, f(a_n)] \cup f[M[a_1, a_n]]$$

contains a simple closed curve, and this violates the unique arcwise connectivity of M. Hence (7) is true.

For each point c of $P(a)$,

(8) $c \in f[M[a_1, c]]$.

To establish (8) assume the contrary. Let y be the point of $P(a)$ that is the greatest lower bound of $\{z \in P(a): z \notin f[M[a_1, z]]\}$ relative to \prec. By (7) and the continuity of f, there exists a point x of $M[a_1, y)$ such that $f(x) = y$. Assume without loss of generality that $y \notin f[M(x, y)]$.

Suppose $x \in M[a_1, a_{n+1})$ and $y \in M[a_n, a_{n+1})$. By (1), (2), and (3), $n > i + 1$. Since M does not contain a simple closed curve, $M[y, a_{n+1}] \cap f[M[x, a_{n+1}]] = \{y\}$. By (5), $a_{n+1} \in M[a_1, f(a_n))$. Therefore $M[y, f(a_n)] \cap M[y, f(a_{n+1})] = \{y\}$. Since $y \notin f[M(x, y)]$, it follows that

$$M[y, f(a_n)] \cup M[y, f(a_{n+1})] \cup f[M[a_{n+1}, a_n]]$$

contains a simple closed curve, and this violates the unique arcwise connectivity of M. Hence (8) is true.

For each integer $i > 1$,

(9) there exists a positive integer n such that $P(a_n) \cap f[M[a_1, a_i]] = \emptyset$.

To see this assume there exists an integer $i > 1$ such that for each positive integer n, $P(a_n) \cap f[M[a_1, a_i]] \neq \emptyset$. Since M does not contain a simple closed curve, there exists a positive integer j such that $P(a_j) \subset f[M[a_1, a_i]]$. Since $f[M[a_1, a_i]]$ is a dendrite, $\overline{P(a_j)}$ is a dendrite [11, Theorem 4, p. 301], and this contradicts (2) (see Theorem 5 of [11, p. 302]). Therefore (9) is true.

Let $L = \cap_{n=1}^{\infty} \overline{P(a_n)}$. It follows from (2) that L is not degenerate. Hence L is a continuum.

According to Lemma 2, there exist a complementary domain D of L and a positive integer α such that $P(a_\alpha) \subset \overline{D}$. Assume without loss of generality that $P \subset \overline{D}$, $a_1 \in D$ (Lemma 3), and D is the unbounded complementary domain of L.

Let X be the continuum $R^2 \setminus D$. Since M is arcwise connected, there is an arc segment S in $M \cap D$ with an endpoint in X. Since M does not contain a simple closed curve, we can assume without loss of generality that $P \cap \overline{S} = \emptyset$.

Using Sieklucki's nested sequence of polygonal disks (described in §2 above), define a sequence $\{\mathscr{T}_m\}_{m=1}^{\infty}$ with the property that for each m, \mathscr{T}_m is an m-chain on (X, S) refined by \mathscr{T}_{m+1}.
For each positive integer \(m \), let \(\mathcal{G}_m \) be the set of all elements \(F \) of \(\mathcal{F}_m \) such that for each point \(u \) of \(P \), \(P(u) \) intersects \((\text{Int} \, F) \setminus X \). By Lemma 6, for each \(m \), \(\mathcal{G}_m \) is a subchain of \(\mathcal{F}_m \). Note that if \(m \) and \(n \) are integers and \(0 < m < n \), then \(\mathcal{G}_n \) refines \(\mathcal{G}_m \) and each end link of \(\mathcal{G}_m \) contains an end link of \(\mathcal{G}_n \).

For each positive integer \(m \), let \(G_1^m, G_2^m, \ldots, G_{\lambda_m}^m \) be the consecutive links of \(\mathcal{G}_m \).

By Lemma 7, for each positive integer \(m \), there exists a point \(u_m \) of \(P \cap \text{Int} \, G_m^m \) such that \(P(u_m) \) is a trace of \(\mathcal{G}_m \). Hence for each \(m \), \(L \subset \text{St} \, \mathcal{G}_m \).

Since \(M \) does not contain a simple closed curve, it follows from the proof of Lemma 6 that for each \(m \),

(10) no arc segment in \((M \setminus X) \cap \text{St}\{G_i^m: 1 < i < \lambda_m\}\) has an endpoint in \(L \).

For each positive integer \(m \), there exists an arc \(B_m \) in \(P(u_m) \) such that \(B_m \subset (\text{St} \, \mathcal{G}_m) \setminus X \) and \(B_m \) is a trace of \(\mathcal{G}_m \). To see this let \(v \) be a point of \(P(u_m) \cap \text{Int} \, G_m^m \). By (8), (9), and (10), there exist points \(w \) and \(x \) of \(P(v) \) such that \(f(w) \in P(w) \cap \text{Int} \, G_m^m \), \(f(x) \in P(x) \cap \text{Int} \, G_m^m \), and the arc \(M[f(w), f(x)] \) is between \(L \) and \(M[u_m, v] \) in \(\text{St} \, \mathcal{G}_m \). By (6), \(M[u_m, v] \cap f[M[w, x]] = \emptyset \). Since \(M \) does not contain a simple closed curve, it follows from (10) that there exists a subarc \(B_m \) of \(M[w, x] \) such that \(f[B_m] \subset (\text{St} \, \mathcal{G}_m) \setminus X \) and \(f[B_m] \) is a trace of \(\mathcal{G}_m \).

Note that \(X \) has the following property:

Reduction Property. The continuum \(X \) does not separate \(R^2 \) and there exist an arc segment \(S \) in \(M \setminus X \) with an endpoint in \(X \), a sequence \(\{A_m\}_{m=1}^\infty \) of arcs in \(P \) converging to \(\text{Bd} \, X \), and a sequence \(\{\mathcal{G}_m\}_{m=1}^\infty \) of chains such that for each \(m \),

(i) \(\mathcal{G}_m \) is a subchain of an \(m \)-chain on \((X, S)\),

(ii) \(\mathcal{G}_{m+1} \) refines \(\mathcal{G}_m \),

(iii) each end link of \(\mathcal{G}_m \) contains an end link of \(\mathcal{G}_{m+1} \),

(iv) \(A_m \) agrees with \(\mathcal{G}_m \), and

(v) either \(f[A_m] \subset (\text{St} \, \mathcal{G}_m) \setminus X \) or there exists a subarc \(B_m \) of \(A_m \) such that \(f[B_m] \subset (\text{St} \, \mathcal{G}_m) \setminus X \) and \(f[B_m] \) agrees with \(\mathcal{G}_m \).

Next we prove that \(X \) contains a continuum that is irreducible with respect to the Reduction Property. Assume \(\{X_n\}_{n=1}^\infty \) is a nested sequence of nonseparating plane continua in \(X \). For each \(n \), assume there exist an arc segment \(S_n \) in \(M \setminus X_n \) that has an endpoint in \(X_n \), a sequence \(\{A_n\}_{n=1}^\infty \) of arcs in \(P \) converging to \(\text{Bd} \, X_n \), and a sequence \(\{\mathcal{G}_n\}_{n=1}^\infty \) of chains with the following property. For each \(m \), \(\mathcal{G}_n^m \) is a subchain of an \(m \)-chain on \((X_n, S_n)\), \(\mathcal{G}_{n+1}^m \) refines \(\mathcal{G}_n^m \), each end link of \(\mathcal{G}_n^m \) contains an end link of \(\mathcal{G}_{n+1}^m \), \(A_n^m \) agrees with \(\mathcal{G}_n^m \), and either \(f[A_n^m] \subset (\text{St} \, \mathcal{G}_n^m) \setminus X_n \) or there exists a subarc \(B_n^m \) of \(A_n^m \) such that \(f[B_n^m] \subset (\text{St} \, \mathcal{G}_n^m) \setminus X_n \) and \(f[B_n^m] \) agrees with \(\mathcal{G}_n^m \). Let \(X_0 = \cap_{n=1}^\infty X_n \).

According to the Brouwer reduction theorem \[16, \text{p. 17}\], it is sufficient to prove that \(X_0 \) is a continuum with the Reduction Property.
Since \(f \) is continuous, for each positive integer \(n \), either \(f[\partial X_n] \subseteq \partial X_n \) or \(\partial X_n \subseteq f[\partial X_n] \). Since \(\{\partial X_n\}_{n=1}^{\infty} \) converges to \(\partial X_0 \), it follows that \(f[\partial X_0] \subseteq \partial X_0 \) or \(\partial X_0 \subseteq f[\partial X_0] \). Since \(f \) moves each point of \(M \), \(\partial X_0 \) is not degenerate. Hence \(X_0 \) is a continuum.

Since \(R^2 \setminus X_0 = \bigcup_{n=1}^{\infty} R^2 \setminus X_n \) and for each \(n \), \(R^2 \setminus X_n \) is connected, it follows that

\[(11) \ R^2 \setminus X_0 \text{ is connected.}\]

Since \(M \) is arcwise connected, there is an arc segment \(S_0 \) in \(M \setminus X_0 \) with an endpoint in \(X_0 \). Assume without loss of generality that \(P \cap \text{Cl} \ S_0 = \emptyset \).

Define a sequence \(\{\gamma_m^0\}_{m=1}^{\infty} \) with the property that for each \(m \), \(\gamma_m^0 \) is an \(m \)-chain on \((X_0, S_0) \) refined by \(c_{\gamma_m^0} \).

There exists a sequence \(\{\gamma_m^0\}_{m=1}^{\infty} \) of chains such that for each \(m \),

\[(12) \ \gamma_m^0 \text{ is a subchain of } \gamma_m^0,\]

\[(13) \ \gamma_m^{0+1} \text{ refines } \gamma_m^0,\]

\[(14) \text{ each end link of } \gamma_m^0 \text{ contains an end link of } \gamma_m^{0+1},\]

\[(15) \text{ there exist integers } i_m \text{ and } j_m \text{ (} j_m > m \text{) such that}\]

\[\text{(i) } \text{St } \gamma_i^m \subseteq (\text{St } \gamma_m^0) \setminus \text{Bd}(X_0 \cup \text{St } \gamma_m^0),\]

\[\text{(ii) the interior of each interior link of } \gamma_m^0 \text{ contains the sides of two consecutive links of } \gamma_i^m,\]

\[\text{(iii) no endpoint of a side of a link of } \gamma_m^0 \text{ belongs to } A_{i_m}^0 \cup f[A_{i_m}^0] \text{ (recall (6)), and}\]

\[\text{(iv) the Hausdorff distance [11, p. 47] from } A_{i_m}^0 \text{ to } \text{Bd } X_{j_m} \text{ is less than } m^{-1}.\]

For each positive integer \(m \), let \(A_m^0 = A_{i_m}^0 \). Since \(\{\partial X_n\}_{n=1}^{\infty} \) converges to \(\partial X_0 \), it follows from (15(iv)) that

\[(16) \ \{A_m^0\}_{m=1}^{\infty} \text{ converges to } \partial X_0.\]

By (15(i)–(iii)) and Lemma 5, for each positive integer \(m \),

\[(17) \ A_m^0 \text{ agrees with } \gamma_m^0,\]

\[(18) \ f[A_m^0] \subseteq (\text{St } \gamma_m^0) \setminus X_0,\]

\[(19) \text{ there exists a subarc } B_m^0 \text{ of } A_m^0 \text{ (} B_m^0 = B_{i_m}^0 \text{) such that } f[B_m^0] \subseteq (\text{St } \gamma_m^0) \setminus X_0 \text{ and } f[B_m^0] \text{ agrees with } \gamma_m^0.\]

It follows from (11)–(14) and (16)–(19) that \(X_0 \) has the Reduction Property. Hence there exists a subcontinuum of \(X \) that is irreducible with respect to the Reduction Property.

For convenience we assume that

\[(20) \text{ no proper subcontinuum of } X_0 \text{ has the Reduction Property.}\]

According to Lemma 4, there exists a positive integer \(\beta \) such that \(\epsilon > 2^{1-\beta} \) and no pair of consecutive links of \(\gamma_m^0 \) contains \(\partial X_0 \) in its union.

By (6), \(S_0 \cap f[P(u)] = \emptyset \) for some point \(u \) of \(P \). Assume without loss of generality that for each integer \(m > \beta \),

\[(21) S_0 \cap f[A_m^0] = \emptyset.\]
Let $G_1, G_2, \ldots, G_\gamma$ be the consecutive links of \mathcal{G}_β. For $i = 1, 2, \ldots, \gamma - 1$, let $V_i = \bigcup_{j=i}^{i+1} G_j$, and let W_i be the common side of G_i and G_{i+1}.

Let $\mathcal{W} = \{W_i: 2 \leq i \leq \gamma - 2\}$. Note that each element of \mathcal{W} has diameter less than ε.

For $m = \beta, \beta + 1, \ldots$ and $i = 2, 3, \ldots, \gamma - 2$, let $W_i^m = A_0^m \cap W_i$.

Definition. A point x of W_i^m is sent back by f if $f(x) \in V_i$; otherwise, x is sent forward by f.

Definition. The arc A_0^m has the switch property if a component of $A_0^m \setminus \operatorname{St} \mathcal{W}$ has endpoints in $\operatorname{St} \mathcal{W}$ that are sent in opposite directions by f.

Statement (18) is true for only finitely many integers $m > \beta$. To see this assume the contrary. Suppose without loss of generality that (18) is true for each integer $m > \beta$.

For each integer $m > \beta$, if f sends two points of $\bigcup_{i=2}^{\gamma-2} W_i^m$ in opposite directions, then, by (1), (18), and (21), A_0^m has the switch property.

Suppose that for infinitely many integers $m > \beta$, two points of $\bigcup_{i=2}^{\gamma-2} W_i^m$ are sent in opposite directions by f. Then infinitely many elements of $\{A_0^m\}_{m=\beta}^{\infty}$ have the switch property. Assume without loss of generality that there exists a component G of $(\operatorname{St} \mathcal{G}_\beta) \setminus (S_0 \cup X_0 \cup \operatorname{St} \mathcal{W})$ such that for each integer $m > \beta$, A_0^m has the switch property on a component T_m of $A_0^m \setminus \operatorname{St} \mathcal{W}$ that is contained in $\operatorname{Cl} G$.

For each integer $m > \beta$, we have three cases.

Case 1. Suppose $f[\operatorname{Cl} T_m] \subset G$. Then $\operatorname{Cl} G$ is a link of \mathcal{G}_0^m and T_m has an endpoint in each side of $\operatorname{Cl} G$.

Case 2. Suppose $f[\operatorname{Cl} T_m]$ intersects two components of $(\operatorname{St} \mathcal{G}_\beta) \setminus (G \cup S_0 \cup X_0)$. Then $\operatorname{Cl} G$ is a link of \mathcal{G}_0^m and there exists an arc A in $\operatorname{Cl} T_m$ such that $f[A] \subset \operatorname{Cl} G$ and $f[A]$ intersects each side of $\operatorname{Cl} G$.

Case 3. Suppose $f[\operatorname{Cl} T_m]$ intersects only one component of $(\operatorname{St} \mathcal{G}_\beta) \setminus (G \cup S_0 \cup X_0)$. Then there exist an element W_i of \mathcal{W} in $\operatorname{Cl} G$ and an arc A in $\operatorname{Cl} T_m$ with an endpoint in W_i such that $f[A] \subset \operatorname{Cl} G$ and $W_i \cap f[A] \neq \emptyset$.

Since one of these three cases holds for infinitely many elements of $\{T_m\}_{m=\beta}^{\infty}$, there is a continuum Y in $X_0 \cap \operatorname{Cl} G$ with the following properties.

A sequence $\{H_m\}_{m=1}^{\infty}$ of arcs in P converging to Y and a sequence $\{\mathcal{K}_m\}_{m=1}^{\infty}$ of chains exist such that for each positive integer m,

(22) $\operatorname{St} \mathcal{K}_m \subset \operatorname{Cl} G$,
(23) \mathcal{K}_m is a subchain of \mathcal{G}_0^m,
(24) \mathcal{K}_{m+1} refines \mathcal{K}_m,
(25) each end link of \mathcal{K}_m contains an end link of \mathcal{K}_{m+1},
(26) H_m agrees with \mathcal{K}_m, and
(27) either $f[H_m] \subset (\operatorname{St} \mathcal{K}_m) \setminus X_0$ or there exists a subarc I_m of H_m such that $f[I_m] \subset (\operatorname{St} \mathcal{K}_m) \setminus X_0$ and $f[I_m]$ agrees with \mathcal{K}_m.

Let U be the complementary domain of Y that contains D. Let X' be the nonseparating plane continuum $R^2 \setminus U$. Note that $Y = \operatorname{Bd} X'$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Since M is arcwise connected, there exists an arc segment S' in $M \setminus X'$ with an endpoint in X'. Since M does not contain a simple closed curve, we can assume without loss of generality that $P \cap \text{Cl } S' = \emptyset$.

Define a sequence \(\{ \mathcal{K}_m \}_{m=1}^{\infty} \) with the property that for each m, \mathcal{K}_m is an m-chain on (X', S') refined by \mathcal{K}_{m+1}.

There exists a sequence \(\{ \mathcal{K}'_m \}_{m=1}^{\infty} \) of chains such that for each m,

(28) \mathcal{K}'_m is a subchain of \mathcal{K}_m,

(29) \mathcal{K}'_{m+1} refines \mathcal{K}_m,

(30) each end link of \mathcal{K}_m contains an end link of \mathcal{K}_{m+1}, and

(31) there exists an integer i_m such that

(i) $\text{St } \mathcal{K}_m \subset (\text{St } \mathcal{K}'_m) \setminus \text{Bd}(X' \cup \text{St } \mathcal{K}_m)$,

(ii) the interior of each interior link of \mathcal{K}_m contains the sides of two consecutive links of \mathcal{K}'_m, and

(iii) no endpoint of a side of a link of \mathcal{K}_m belongs to $H_{i_m} \cup f[H_{i_m}]$.

It follows from (26)–(31) that X' has the Reduction Property. Since $\text{Cl } G$ is either a link or the union of two consecutive links of \mathcal{G}_β, $\text{Bd } X_0 \subset \text{Bd } X'$. But X' and X_0 are nonseparating plane continua and $\text{Bd } X' \subset \text{Bd } X_0$. Consequently X' is a proper subcontinuum of X_0, and this contradicts (20). Hence for all but finitely many integers $m > \beta$, f sends each point of $\bigcup_{i=2}^{\infty} W_i^m$ in the same direction.

Assume without loss of generality that for each integer $m > \beta$, every point of $\bigcup_{i=2}^{\infty} W_i^m$ is sent back by f.

The set \(\{ m : f[A_m \cap (G_1 \cup G_2)] \subset G_1 \cup G_2 \} \) is finite; for otherwise, Case 3 (with $\text{Cl } G = G_1 \cup G_2$ and $W_i = W_2$) holds for infinitely many elements of $\{ A_m \}_{m=\beta}^{\infty}$, and we have shown that this is impossible. Hence we can assume without loss of generality that for each integer $m > \beta$,

(32) $f[A_m \cap (G_1 \cup G_2)] \subset G_1 \cup G_2$.

For each positive integer m, let \mathcal{H}_m be the chain consisting of all links of $\mathcal{G}_m + \beta$ that intersect $\text{Int}(G_1 \cup G_2)$, and let H_m be an arc in $A_m^{0+\beta} \cap (G_1 \cup G_2)$ that intersects W_2 and agrees with \mathcal{H}_m.

The sequence \(\{ H_m \}_{m=1}^{\infty} \) converges to a continuum in $X_0 \cap (G_1 \cup G_2)$. For each positive integer m, $\text{St } \mathcal{H}_m \subset G_1 \cup G_2$ and conditions (23)–(26) are satisfied. By (18) and (32), for each positive integer m, $f[H_m] \subset (\text{St } \mathcal{H}_m) \setminus X_0$. According to the argument following (27), a proper subcontinuum of X_0 has the Reduction Property, and this contradicts (20). Hence (18) is true for at most finitely many integers.

Assume without loss of generality that (19) holds for each integer $m > \beta$.

By the preceding argument, for infinitely many integers $m > \beta$, A_m^{0} does not have the switch property on a component of $A_m^{0} \setminus \text{St } \mathcal{H}^{0}$ that is contained in B_m^{0}. Hence we can assume without loss of generality that for each integer $m > \beta$, every point of $B_m^{0} \cap \bigcup_{i=2}^{\infty} W_i^m$ is sent forward by f. It follows from a similar argument that for infinitely many integers $m > \beta$,
(33) for each point \(x\) of \(B_0^0 \setminus V_i\) \((2 \leq i \leq \gamma - 2)\), \(f(x) \notin V_i\).

We assume without loss of generality that (33) holds for each integer \(m \geq \beta\).

Since for each positive integer \(m\), \(B^0_{m+\beta}\) has the properties given in (19) and (33), there exist a sequence \(\{H_m\}_{m=1}^\infty\) of arcs in \(P\) converging to a continuum in \(X_0 \cap (G_1 \cup G_2)\) and a sequence \(\{\gamma_m\}_{m=1}^\infty\) of chains with the following properties. For each positive integer \(m\), \(\text{St} \gamma_m \subset G_1 \cup G_2\), conditions (23)–(26) are satisfied, \(H_m \cap W_2 \neq \emptyset\), and there exists a subarc \(I_m\) of \(H_m\) such that \(f[I_m] \subset (\text{St} \gamma_m) \setminus X_0\) and \(f[I_m]\) agrees with \(\gamma_m\).

By the argument following (27), a proper subcontinuum of \(X_0\) has the Reduction Property, and this contradicts (20). Hence every continuous function of \(M\) into \(M\) has a fixed point. \(\square\)

REFERENCES

15. K. Sieklucki, On a class of plane acyclic continua with the fixed point property, Fund. Math. 63 (1968), 257–278.