ERRATUM TO "TORSION IN THE BORDISM OF ORIENTED INVOLUTIONS"

BY

RUSSELL J. ROWLETT

It has been discovered that the paper [2] contains a serious error. In fact, the main theorem [2, p. 541] is false as stated.

The error is at the bottom of p. 546, where the "homomorphism" \(d: W_m(G, F, F') \rightarrow \Omega_{m-1}(G, F, F') \) appears. Unfortunately, R. E. Stong has discovered that the construction \(d \) is not well defined if \(G = \mathbb{Z}_2^k \) and \(k \geq 2 \). A full discussion is to appear in [3].

The effect of this mistake is that we can no longer prove that the extension homomorphism \(e: \Omega_*(\mathbb{Z}_2^{k-1}) \rightarrow \Omega_*(\mathbb{Z}_2^k) \) is zero on classes of order two. In fact, it is not. To see this, one may define an invariant \(\omega: \Omega_*(\mathbb{Z}_2^k) \rightarrow \mathbb{Z}_2 \) to be the composition

\[
\Omega_*(\mathbb{Z}_2^k)^{ab} \xrightarrow{\text{ab}} W(\mathbb{Z}_2^k; \mathbb{Z}) \xrightarrow{\pi} W(\mathbb{Z}_2^k; \mathbb{Z})^{\text{trs}} \rightarrow \mathbb{Z}_2.
\]

Here \(\text{ab} \) is the Atiyah-Bott homomorphism, \(\text{trs} \) the torsion invariant (for both, see [1]), and \(\pi \) is defined as follows: given a \(\mathbb{Z}(\mathbb{Z}_2^k) \)-module \(V \) with equivariant inner product, let generators of \(\mathbb{Z}_2^k \) act on \(V \) by isometries \(A \) and \(B \). Then \(\pi[V] = [K] \) for \(K = \text{Ker}(A - B) \). It is easy to check that this is well defined.

If we remember [1, Theorem 10] that \(\text{trs}[W] \) is the number (mod 2) of copies of \(\mathbb{Z}(\mathbb{Z}_2) \) in \(W \), it is also easy to check that \(\omega \cdot e(x) = \text{trs}(x) \) for any \(x \in \Omega_*(\mathbb{Z}_2) \). Then we recall that \(\text{trs}(x_0) \neq 0 \) if \(x_0 \in \Omega_4(\mathbb{Z}) \) is the element of order two [1, Theorem 4]. Thus \(e(x_0) \neq 0 \).

Therefore it is not true, as asserted in [2], that any class in \(\Omega_*(\mathbb{Z}_2^k) \) represented by a stationary-point free action has infinite order. It may still be true that all torsion of \(\Omega_*(\mathbb{Z}_2^k) \) has order two, but the argument of [2] does not suffice to prove this.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916

© 1979 American Mathematical Society
0002-9947/79/0000-0061/01.25

221