Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Subgroups of classical groups generated by long root elements


Author: William M. Kantor
Journal: Trans. Amer. Math. Soc. 248 (1979), 347-379
MSC: Primary 20G40
DOI: https://doi.org/10.1090/S0002-9947-1979-0522265-1
MathSciNet review: 522265
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: All conjugacy classes of subgroups G of classical groups of characteristic p are determined, which are generated by a conjugacy class of long root elements and satisfy $ {O_p}(G) \leqslant G' \cap Z(G)$.


References [Enhancements On Off] (What's this?)

  • [1] M. Aschbacher, On finite groups generated by odd transpositions. I, II, III, IV, Math. Z. 127 (1972), 45-56; J. Algebra 26 (1973), 451-559; ibid 26 (1973), 460-478; ibid 26 (1973), 479-491. MR 48 #6242. MR 0310058 (46:9161)
  • [2] -, A characterization of Chevalley groups over fields of odd order, Ann. of Math. (2) 106 (1977), 353-468. MR 0498828 (58:16865a)
  • [3] M. Aschbacher and G. M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1-91. MR 0422401 (54:10391)
  • [4] E. Cline, B. Parshall and L. Scott, Cohomology of finite groups of Lie type. I, Inst. Hautes Études Sci. Publ. Math. No. 45 (1975), 169-191. MR 52 #3134. MR 0399283 (53:3134)
  • [5] C. W. Curtis, W. M. Kantor and G. M. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1-59. MR 0422440 (54:10429)
  • [6] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962. MR 26 #2519. MR 0144979 (26:2519)
  • [7] B. Fischer, Finite groups generated by 3-transpositions. I, Univ. of Warwick, preprint; Invent. Math. 13 (1971), 232-246. MR 45 #3557. MR 0294487 (45:3557)
  • [8] -, Subgroups of $ {}^2{E_6}(2)$ isomorphic to M (22) (unpublished).
  • [9] D. Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 38 #229. MR 0231903 (38:229)
  • [10] R. Griess, Schur multipliers of the known finite simple groups, Bull. Amer. Math. Soc. 78 (1972), 68-71. MR 0289635 (44:6823)
  • [11] M. Hall, Jr. and D. Wales, The simple group of order 604, 800, J. Algebra 9 (1968), 417-450. MR 39 #1544. MR 0240192 (39:1544)
  • [12] R. W. Hartley, Determination of the ternary collineation groups whose coefficients tie in the $ GF({2^n})$, Ann. of Math. (2) 27 (1926), 140-158. MR 1502720
  • [13] C. Y. Ho, On the classical case of the quadratic pairs for 3 whose root group has order 3, Ph. D. Thesis, Univ. of Chicago, 1972.
  • [14] -, Chevalley groups of odd characteristic as quadratic pairs, J. Algebra 41 (1976), 202-211. MR 0414737 (54:2832)
  • [15] W. Jones, Cohomology of finite groups of Lie type, Ph. D. Thesis, Univ. of Minnesota, 1975.
  • [16] J. D. Key, Some maximal subgroups of $ PSL(n,q),n \geqslant 3,q = {2^r}$, Geometriae Dedicata 4 (1975), 377-386. MR 0409679 (53:13431)
  • [17] V. Landazuri and G. M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418-443. MR 50 #13299. MR 0360852 (50:13299)
  • [18] J. McLaughlin, Some groups generated by transvections, Arch. Math. Basel 18 (1967), 364-368. MR 36 #5236. MR 0222184 (36:5236)
  • [19] -, Some subgroups of $ S{L_n}({F_2})$, Illinois J. Math. 13 (1969), 108-115. MR 38 #5941.
  • [20] H. H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc. 14 (1913), 123-142. MR 1500941
  • [21] B. Mwene, On the subgroups of the group $ PS{L_4}({2^m})$, J. Algebra 41 (1976), 79-107. MR 0409654 (53:13406)
  • [22] F. Piper, On elations of finite projective spaces of odd order, J. London Math. Soc. 41 (1966), 641-648. MR 0202036 (34:1912)
  • [23] -, On elations of finite projective spaces of even order, J. London Math. Soc. 43 (1968), 459-164. MR 37 #2082. MR 0226493 (37:2082)
  • [24] H. Pollatsek, First cohomology groups of some linear groups over fields of characteristic two, Illinois J. Math. 15 (1971), 393-417. MR 43 #6316. MR 0280596 (43:6316)
  • [25] -First cohomology groups of some orthogonal groups, J. Algebra 28 (1974), 477-483. MR 0453891 (56:12144)
  • [26] -, Irreducible groups generated by transvections over fields of characteristic two, J. Algebra 39 (1976), 328-333. MR 0401942 (53:5768)
  • [27] G. J. Schellekens, On a hexagonic structure, Indag. Math. 24 (1962), 201-234. MR 26 #641b. MR 0143075 (26:641a)
  • [28] B. S. Stark, Irreducible subgroups of orthogonal groups generated by groups of root type 1. Pacific J. Math. 53 (1974), 611-625. MR 0357642 (50:10110)
  • [29] R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56. MR 27 #5870. MR 0155937 (27:5870)
  • [30] E. Stensholt, An application of Steinberg's construction of twisted groups, Pacific J. Math. 55 (1974), 595-618. MR 51 #8282. MR 0372065 (51:8282)
  • [31] -, Certain embeddings of finite groups of Lie type, J. Algebra 53 (1978), 136-187. MR 0486182 (58:5960)
  • [32] J. G. Thompson, Quadratic pairs (unpublished).
  • [33] F. G. Timmesfeld, Groups generated by root-involutions. I, J. Algebra 33 (1975), 75-134. MR 51 #8236. MR 0372019 (51:8236)
  • [34] A. Wagner, Groups generated by elations, Abh. Math. Sem. Univ. Hamburg 41 (1974), 199-205. MR 49 #10798. MR 0346072 (49:10798)
  • [35] -, The subgroups of $ PSL(5,{2^a})$ Abh. Math. Sem. Univ. Hamburg (to appear).
  • [36] D. Wales, Generators of the Hall-Janko group as a subgroup of $ {G_2}(4)$, J. Algebra 13 (1969), 513-516. MR 40 #4364. MR 0251133 (40:4364)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20G40

Retrieve articles in all journals with MSC: 20G40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0522265-1
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society